Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 15;231(Pt 3):116269.
doi: 10.1016/j.envres.2023.116269. Epub 2023 May 29.

Denitrification shifted autotroph-heterotroph interactions in Microcystis aggregates

Affiliations

Denitrification shifted autotroph-heterotroph interactions in Microcystis aggregates

Zhijie Chen et al. Environ Res. .

Abstract

Denitrification is the most important process for nitrogen removal in eutrophic lakes and was mostly investigated in lake sediment. Denitrification could also be mediated by cyanobacterial aggregates, yet how this process impacts nitrogen (N) availability and the associated autotroph-heterotroph relationships within cyanobacterial aggregates has not been investigated. In this study, incubation experiments with nitrate amendment were conducted with Microcystis aggregates (MAs). Measurement of nitrogen contents, 16S rRNA-based microbial community profiling and metatranscriptomic sequencing were used to jointly assess nitrogen turnover dynamics, as well as changes in microbial composition and gene expression. Strong denitrification potential was revealed, and maximal N removal was achieved within two days, after which the communities entered a state of severe N limitation. Changes of active microbial communities were further promoted both with regard to taxonomic composition and transcriptive activities. Expression of transportation-related genes confirmed competition for N sources by Microcystis and phycospheric communities. Strong stress response to reactive oxygen species by Microcystis was revealed. Notably, interspecific relationships among Microcystis and phycospheric communities exhibited a shift toward antagonistic interactions, particularly evidenced by overall increased expression of genes related to cell lysis and utilization of cellular materials. Patterns of fatty acid and starch metabolism also suggested changes in carbon metabolism and cross-feeding patterns within MAs. Taken together, this study demonstrated substantial denitrification potential of MAs, which, importantly, further induced changes in both metabolic activities and autotroph-heterotroph interactions. These findings also highlight the key role of nutrient condition in shaping autotroph-heterotroph relationships.

Keywords: Autotroph-heterotroph interactions; Cyanobacterial aggregates; Denitrification; Eutrophication; Microcystis.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources