Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan:152:106405.
doi: 10.1016/j.compbiomed.2022.106405. Epub 2022 Dec 7.

Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools

Affiliations
Review

Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools

Ramin Ranjbarzadeh et al. Comput Biol Med. 2023 Jan.

Abstract

Background: Brain cancer is a destructive and life-threatening disease that imposes immense negative effects on patients' lives. Therefore, the detection of brain tumors at an early stage improves the impact of treatments and increases the patients survival rates. However, detecting brain tumors in their initial stages is a demanding task and an unmet need.

Methods: The present study presents a comprehensive review of the recent Artificial Intelligence (AI) methods of diagnosing brain tumors using MRI images. These AI techniques can be divided into Supervised, Unsupervised, and Deep Learning (DL) methods.

Results: Diagnosing and segmenting brain tumors usually begin with Magnetic Resonance Imaging (MRI) on the brain since MRI is a noninvasive imaging technique. Another existing challenge is that the growth of technology is faster than the rate of increase in the number of medical staff who can employ these technologies. It has resulted in an increased risk of diagnostic misinterpretation. Therefore, developing robust automated brain tumor detection techniques has been studied widely over the past years.

Conclusion: The current review provides an analysis of the performance of modern methods in this area. Moreover, various image segmentation methods in addition to the recent efforts of researchers are summarized. Finally, the paper discusses open questions and suggests directions for future research.

Keywords: Artificial intelligence; Brain tumor; MRI Modalities; Tumor classification; Tumor segmentation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that there is no conflicting or financial interests.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources