Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 27;14(23):5051.
doi: 10.3390/nu14235051.

The Impact of Dietary Flavonols on Central Obesity Parameters in Polish Adults

Affiliations

The Impact of Dietary Flavonols on Central Obesity Parameters in Polish Adults

Joanna Popiolek-Kalisz. Nutrients. .

Abstract

Background: Central obesity is defined as the excessive fat tissue located in abdominal region accompanied by systemic inflammation, which drives to cardiovascular disease. Flavonols are antioxidative agents present in food. The aim of this study was investigating the relationship between dietary flavonols intake and central obesity. Methods and results: 80 participants (40 central obese and 40 healthy controls) were administered a food frequency questionnaire dedicated to flavonols intake assessment. Body composition was measured with bioelectrical impedance analysis. The analysis showed significant differences between central obese participants and healthy controls in total flavonol (p = 0.005), quercetin (p = 0.003), kaempferol (p = 0.04) and isorhamnetin (p < 0.001) habitual intake. Among central obese participants, there was a moderate inverse correlation between fat mass (FM) and total flavonol (R = −0.378; 95% CI: −0.620 to −0.071; p = 0.02), quercetin (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03), kaempferol (R = −0.425; 95% CI: −0.653 to −0.127; p = 0.01) and myricetin intake (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03). BMI was inversely correlated with total flavonol (R = −0.330; 95% CI: −0.584 to −0.016; p = 0.04) and quercetin intake (R = −0.336; 95% CI: −0.589 to −0.023; p = 0.04). Waist circumference was inversely correlated with total flavonol (R = −0.328; 95% CI: −0.586 to −0.009; p = 0.04), quercetin (R = −0.322; 95% CI: −0.582 to −0.002; p = 0.048) and myricetin intake (R = −0.367; 95% CI: −0.615 to −0.054; p = 0.02). Among flavonols’ dietary sources, there was an inverse correlation between black tea consumption and FM (R: −0.511; 95% CI: −0.712 to −0.233; p < 0.001) and between coffee and waist circumference (R: −0.352; 95% CI: −0.604 to −0.036; p = 0.03) in central obese participants. Conclusions: The higher flavonol intake could play a protective role in abdominal obesity development. What is more, total and selected flavonol dietary intakes are inversely correlated with the parameters used for obesity assessment in central obese participants. The habitual consumption of products rich in flavonols, mainly tea and coffee, could possibly have a preventive role in abdominal obesity development.

Keywords: abdominal obesity; flavonols; isorhamnetin; myricetin; obesity; quercetin.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
The boxplots presenting differences in flavonol intake between central obese participants and healthy control.

Similar articles

Cited by

References

    1. World Health Organization The Top 10 Causes of Death—Factsheet. [(accessed on 14 October 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
    1. Wormser D., Kaptoge S., Di Angelantonio E., Wood A.M., Pennells L., Thompson A., Sarwar N., Kizer J.R., Lawlor D.A., Nordestgaard B.G., et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–1095. doi: 10.1016/s0140-6736(11)60105-0. - DOI - PMC - PubMed
    1. Sun Y.-Q., Burgess S., Staley J.R., Wood A.M., Bell S., Kaptoge S.K., Guo Q., Bolton T.R., Mason A.M., Butterworth A.S., et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: Linear and non-linear mendelian randomisation analyses. BMJ. 2019;364:l1042. doi: 10.1136/bmj.l1042. - DOI - PMC - PubMed
    1. Bentham J., Di Cesare M., Bilano V., Bixby H., Zhou B., Stevens G.A., Riley L.M., Taddei C., Hajifathalian K., Lu Y., et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128.9 Million Children, Adolescents, and Adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3. - DOI - PMC - PubMed
    1. Liu B., Du Y., Wu Y., Snetselaar L.G., Wallace R.B., Bao W. Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011-18: Population based study. BMJ. 2021;372:n365. doi: 10.1136/bmj.n365. - DOI - PMC - PubMed

LinkOut - more resources