Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec 12;62(23):5875-5895.
doi: 10.1021/acs.jcim.2c01161. Epub 2022 Nov 15.

Application of Machine Learning in Spatial Proteomics

Affiliations
Review

Application of Machine Learning in Spatial Proteomics

Minjie Mou et al. J Chem Inf Model. .

Abstract

Spatial proteomics is an interdisciplinary field that investigates the localization and dynamics of proteins, and it has gained extensive attention in recent years, especially the subcellular proteomics. Numerous evidence indicate that the subcellular localization of proteins is associated with various cellular processes and disease progression. Mass spectrometry (MS)-based and imaging-based experimental approaches have been developed to acquire large-scale spatial proteomic data. To allow the reliable analysis of increasingly complex spatial proteomics data, machine learning (ML) methods have been widely used in both MS-based and imaging-based spatial proteomic data analysis pipelines. Here, we comprehensively survey the applications of ML in spatial proteomics from following aspects: (1) data resources for spatial proteome are comprehensively introduced; (2) the roles of different ML algorithms in data analysis pipelines are elaborated; (3) successful applications of spatial proteomics and several analytical tools integrating ML methods are presented; (4) challenges existing in modern ML-based spatial proteomics studies are discussed. This review provides guidelines for researchers seeking to apply ML methods to analyze spatial proteomic data and can facilitate insightful understanding of cell biology as well as the future research in medical and drug discovery communities.

Keywords: analytical tools; cell biology; data resources; deep learning; imaging; machine learning; mass spectrometry; protein subcellular localization; spatial proteomics.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources