Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr:254:115-127.
doi: 10.1016/j.trsl.2022.10.008. Epub 2022 Nov 3.

Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway

Affiliations

Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway

Shuofei Yang et al. Transl Res. 2023 Apr.

Abstract

Diabetic foot ulcer (DFU) is among the most frequent complications of diabetes and is associated with significant morbidity and mortality. Excessive neutrophil extracellular traps (NETs) delay wound healing in diabetic patients. Therefore, interventions targeting NET release need to be developed to effectively prevent NET-based wound healing impairment. Gasdermin D (GSDMD), a pore-forming protein acts as a central executioner of inflammatory cell death and can activate inflammasomes in neutrophils to release NETs. A precise understanding of the mechanism underlying NET-mediated delay in diabetic wound healing may be valuable in identifying potential therapeutic targets to improve clinical outcomes. In this study, we reported that neutrophils were more susceptible to NETosis in diabetic wound environments of patients with DFU. By in vitro experiments and using in vivo mouse models of diabetic wound healing (wide-type, Nlrp3-/-, Casp-1-/-, and Gsdmd-/- mice), we demonstrated that NLRP3/caspase-1/GSDMD pathway on activation controls NET release by neutrophils in diabetic wound tissue. Furthermore, inhibition of GSDMD with disulfiram or genic deletion of Gsdmd abrogated NET formation, thereby accelerating diabetic wound healing. Disulfiram could inhibit NETs-mediated diabetic foot ulcer healing impairment by suppressing the NLRP3/Caspase-1/GSDMD pathway. In summary, our findings uncover a novel therapeutic role of disulfiram in inhibiting NET formation, which is of considerable value in accelerating wound healing in patients with DFU.

PubMed Disclaimer

Similar articles

Cited by

Publication types