Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 15:225:119119.
doi: 10.1016/j.watres.2022.119119. Epub 2022 Sep 14.

Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton

Affiliations
Free article

Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton

Louis Carles et al. Water Res. .
Free article

Abstract

Effluents of wastewater treatment plants can impact microbial communities in the receiving streams. However, little is known about the role of microorganisms in wastewater as opposed to other wastewater constituents, such as nutrients and micropollutants. We aimed therefore at determining the impact of wastewater microorganisms on the microbial diversity and function of periphyton, key microbial communities in streams. We used a flow-through channel system to grow periphyton upon exposure to a mixture of stream water and unfiltered or ultra-filtered wastewater. Impacts were assessed on periphyton biomass, activities and tolerance to micropollutants, as well as on microbial diversity. Our results showed that wastewater microorganisms colonized periphyton and modified its community composition, resulting for instance in an increased abundance of Chloroflexi and a decreased abundance of diatoms and green algae. This led to shifts towards heterotrophy, as suggested by the changes in nutrient stoichiometry and the increased mineralization potential of carbon substrates. An increased tolerance towards micropollutants was only found for periphyton exposed to unfiltered wastewater but not to ultra-filtered wastewater, suggesting that wastewater microorganisms were responsible for this increased tolerance. Overall, our results highlight the need to consider the role of wastewater microorganisms when studying potential impacts of wastewater on the receiving water body.

Keywords: DNA metabarcoding; Eukaryotes; Micropollutants; Pollution-induced community tolerance; Prokaryotes; Stream biofilm.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources