Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 30:9:850769.
doi: 10.3389/fvets.2022.850769. eCollection 2022.

Protective Effects of Resveratrol and Apigenin Dietary Supplementation on Serum Antioxidative Parameters and mRNAs Expression in the Small Intestines of Diquat-Challenged Pullets

Affiliations

Protective Effects of Resveratrol and Apigenin Dietary Supplementation on Serum Antioxidative Parameters and mRNAs Expression in the Small Intestines of Diquat-Challenged Pullets

Ning Zhou et al. Front Vet Sci. .

Abstract

Poultry as a large-scale intensive farming is vulnerable to oxidative stress. Resveratrol and apigenin are recognized to have many beneficial bioactive functions. This study tested the hypothesis that dietary resveratrol and apigenin supplementation alleviates oxidative stress in the small intestine of diquat-challenged pullets. A total of 200 healthy pullets were randomly divided into four treatment groups: control group fed with a basal diet (CON), diquat group fed with a basal diet (DIQ), resveratrol group fed with a basal diet containing 500 mg/kg resveratrol (RES), and an apigenin group fed with a basal diet containing 500 mg/kg apigenin (API) and injected intraperitoneally with either 1 ml of saline (CON) or 8 mg/kg body weight of diquat (DIQ, RES, and API) to induce oxidative stress. The day of the injection was considered as day 0. The results indicated that resveratrol and apigenin were able to decrease the malondialdehyde (MDA) level and upregulate total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) levels in serum on day 1 and 10 after being diquat-challenged. In addition, resveratrol increased mRNA expression of NQO1 (NAD(P)H dehydrogenase quinone 1) and HO-1 (heme oxygenase-1) in ileum and jejunum on day 10, while apigenin upregulated nuclear factor erythroid 2-related factor 2 (NRF2), NQO1, and HO-1 in ileum and jejunum on day 10. Both resveratrol and apigenin increased the mRNA expression of CLAUDIN-1 in ileum and jejunum on day 1 and that of ZO-1 (zonula occludens-1) in ileum on day 10 post-diquat-injection. These findings indicate that dietary supplementation with resveratrol and apigenin attenuates oxidative stress involving NRF2 signaling pathways in diquat-challenged pullets to some extent. These observations are valuable for the chicken industry and resveratrol and apigenin applications in animal husbandry.

Keywords: apigenin; diquat; mRNA expression; oxidative stress; pullets; resveratrol; small intestine.

PubMed Disclaimer

Conflict of interest statement

WL was employed by Huzhou Lvchang Ecoagriculture Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Effects of dietary resveratrol and apigenin supplementation on mRNA expression of antioxidant genes in ileum and jejunum on day 10. (A) Related genes expression level in the ileum of pullets. (B) Related genes expression level in the jejunum of pullets. SOD-1, superoxide dismutase 1; CAT, catalase; GPX-1, glutathione peroxidase 1. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat. Data are means ± standard error; mean values sharing different lowercase letters differ significantly (p < 0.05).
Figure 2
Figure 2
Effect of resveratrol and apigenin on intestinal morphological structure in diquat-induce oxidative stress with chickens on day 10 after injection with diquat (HE, ×20 and ×200). (A) The images of the ileum morphology. (B) The images of the jejunum morphology. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat.
Figure 3
Figure 3
Effects of dietary resveratrol and apigenin supplementation on mRNA expression of antioxidant genes and tight junction RNAs in ileum on day 1. (A) The expression level of NRF2 gene in ileum from different groups. (B) The expression level of NQO1 gene in ileum from different groups. (C) The expression level of HO-1 gene in ileum from different groups. (D) The expression level of CLAUDIN-1 gene in ileum from different groups. (E) The expression level of OCCLUDIN gene in ileum from different groups. (F) The expression level of ZO-1 gene in ileum from different groups. NRF2, nuclear factor erythroid 2-related factor 2; NQO1, NAD (P) H dehydrogenase quinone 1; HO-1, heme oxygenase-1; ZO1, zonula occludens-1. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat. Data are means ± standard error; mean values sharing different lowercase letters differ significantly (p < 0.05).
Figure 4
Figure 4
Effects of dietary resveratrol and apigenin supplementation on mRNA expression of antioxidant genes and tight junction RNAs in ileum on day 10. (A) The expression level of NRF2 gene in ileum from different groups. (B) The expression level of NQO1 gene in ileum from different groups. (C) The expression level of HO-1 gene in ileum from different groups. (D) The expression level of CLAUDIN-1 gene in ileum from different groups. (E) The expression level of OCCLUDIN gene in ileum from different groups. (F) The expression level of ZO-1 gene in ileum from different groups. NRF2, nuclear factor erythroid 2-related factor 2; NQO1, NAD (P) H dehydrogenase quinone 1; HO-1, heme oxygenase-1; ZO1, zonula occludens-1. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat. Data are means ± standard error; mean values sharing different lowercase letters differ significantly (p < 0.05).
Figure 5
Figure 5
Effects of dietary resveratrol and apigenin supplementation on mRNA expression of antioxidant genes and tight junction RNAs in jejunum on day 1. (A) The expression level of NRF2 gene in jejunum from different groups. (B) The expression level of NQO1 gene in jejunum from different groups. (C) The expression level of HO-1 gene in jejunum from different groups. (D) The expression level of CLAUDIN-1 gene in jejunum from different groups. (E) The expression level of OCCLUDIN gene in jejunum from different groups. (F) The expression level of ZO-1 gene in jejunum from different groups. NRF2, nuclear factor erythroid 2-related factor 2; NQO1, NAD (P) H dehydrogenase quinone 1; HO-1, heme oxygenase-1; ZO1, zonula occludens-1. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat. Data are means ± standard error; mean values sharing different lowercase letters differ significantly (p < 0.05).
Figure 6
Figure 6
Effects of dietary resveratrol and apigenin supplementation on mRNA expression of antioxidant genes and tight junction RNAs in jejunum on day 10. (A) The expression level of NRF2 gene in jejunum from different groups. (B) The expression level of NQO1 gene in jejunum from different groups. (C) The expression level of HO-1 gene in jejunum from different groups. (D) The expression level of CLAUDIN-1 gene in jejunum from different groups. (E) The expression level of OCCLUDIN gene in jejunum from different groups. (F) The expression level of ZO-1 gene in jejunum from different groups. NRF2, nuclear factor erythroid 2-related factor 2; NQO1, NAD (P) H dehydrogenase quinone 1; HO-1, heme oxygenase-1; ZO1, zonula occludens-1. CON, pullets fed basal diet; DIQ, diquat-injection pullets; RES, pullets fed with a basal diet containing resveratrol and injected with diquat; API, pullets fed with a basal diet containing apigenin and injected with diquat. Data are means ± standard error; mean values sharing different lowercase letters differ significantly (p < 0.05).

Similar articles

Cited by

References

    1. Frankič T, Salobir K, Salobir J. The comparison of in vivo antigenotoxic and antioxidative capacity of two propylene glycol extracts of calendula officinalis (marigold) and vitamin E in young growing pigs. J Anim Physiol Anim Nutr. (2010) 93:688–94. 10.1111/j.1439-0396.2008.00855.x - DOI - PubMed
    1. Cap M, Vachova L, Palkova Z. Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev. (2012) 2012:976753. 10.1155/2012/976753 - DOI - PMC - PubMed
    1. Kumar S, Pandey AK. Free radicals: health implications and their mitigation by herbals. Br J Med Med Res. (2015) 7:438–57. 10.9734/BJMMR/2015/16284 - DOI
    1. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. . Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. (2015) 74:101–10. 10.1016/j.biopha.2015.07.025 - DOI - PubMed
    1. Han JY, Shuvaev VV, Muzykantov VR. Catalase and SOD conjugated with PECAM antibody distinctly alleviate abnormal endothelial permeability caused by exogenous ROS and vascular endothelial growth factor. J Pharmacol Exp Ther. (2011) 378:82–91. 10.1124/jpet.111.180620 - DOI - PMC - PubMed