Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May;121(1):1-9.
doi: 10.1016/0012-1606(87)90132-1.

Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells

Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells

A G Smith et al. Dev Biol. 1987 May.

Abstract

Many pluripotent embryonal carcinoma (EC) cell lines and all embryonic stem (ES) cell lines have hitherto been maintained in the undifferentiated state only by culture on feeder layers of mitomycin C-treated embryonic fibroblasts. We now demonstrate that medium conditioned by incubation with Buffalo rat liver (BRL) cells prevents the spontaneous differentiation of such cells which occurs when they are plated in the absence of feeders. This effect is not mediated via cell selection but represents a fully reversible inhibitory action ascribed to a differentiation-inhibiting activity (DIA). BRL-conditioned medium can therefore replace feeders in the propagation of homogeneous stem cell populations. Such medium also restricts differentiation in embryoid bodies formed via aggregation of EC cells and partially inhibits retinoic acid-induced differentiation. The PSA4 EC line gives rise only to extraembryonic endoderm-like cells when aggregated or exposed to retinoic acid in BRL-conditioned medium. This suggests that DIA may be lineage-specific. DIA is a dialysable, acid-stable entity of apparent molecular weight 20,000-35,000. Its actions are reproduced neither by insulin-like growth factor-II nor by transforming growth factor-beta. DIA thus appears to be a novel factor exerting a negative control over embryonic stem cell differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources