The role of zinc in the adaptive evolution of polar phytoplankton
- PMID: 35654896
- DOI: 10.1038/s41559-022-01750-x
The role of zinc in the adaptive evolution of polar phytoplankton
Abstract
Zinc is an essential trace metal for oceanic primary producers with the highest concentrations in polar oceans. However, its role in the biological functioning and adaptive evolution of polar phytoplankton remains enigmatic. Here, we have applied a combination of evolutionary genomics, quantitative proteomics, co-expression analyses and cellular physiology to suggest that model polar phytoplankton species have a higher demand for zinc because of elevated cellular levels of zinc-binding proteins. We propose that adaptive expansion of regulatory zinc-finger protein families, co-expanded and co-expressed zinc-binding proteins families involved in photosynthesis and growth in these microalgal species and their natural communities were identified to be responsible for the higher zinc demand. The expression of their encoding genes in eukaryotic phytoplankton metatranscriptomes from pole-to-pole was identified to correlate not only with dissolved zinc concentrations in the upper ocean but also with temperature, suggesting that environmental conditions of polar oceans are responsible for an increased demand of zinc. These results suggest that zinc plays an important role in supporting photosynthetic growth in eukaryotic polar phytoplankton and that this has been critical for algal colonization of low-temperature polar oceans.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Comment in
-
Polar algae flaunt their zinc assets.Nat Ecol Evol. 2022 Jul;6(7):851-852. doi: 10.1038/s41559-022-01721-2. Nat Ecol Evol. 2022. PMID: 35654897 No abstract available.
Similar articles
-
The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole.Nat Commun. 2021 Sep 16;12(1):5483. doi: 10.1038/s41467-021-25646-9. Nat Commun. 2021. PMID: 34531387 Free PMC article.
-
Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton.Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4388-4393. doi: 10.1073/pnas.1810886116. Epub 2019 Feb 20. Proc Natl Acad Sci U S A. 2019. PMID: 30787187 Free PMC article.
-
Nickel and zinc micronutrient availability in Phanerozoic oceans.Geobiology. 2023 May;21(3):310-322. doi: 10.1111/gbi.12541. Epub 2022 Dec 19. Geobiology. 2023. PMID: 36536606
-
Learning to read the oceans genomics of marine phytoplankton.Adv Mar Biol. 2011;60:1-39. doi: 10.1016/B978-0-12-385529-9.00001-9. Adv Mar Biol. 2011. PMID: 21962749 Review.
-
The trace metal composition of marine phytoplankton.Ann Rev Mar Sci. 2013;5:191-215. doi: 10.1146/annurev-marine-121211-172322. Epub 2012 Aug 28. Ann Rev Mar Sci. 2013. PMID: 22809181 Review.
Cited by
-
Manganese Limitation of Phytoplankton Physiology and Productivity in the Southern Ocean.Global Biogeochem Cycles. 2022 Nov;36(11):e2022GB007382. doi: 10.1029/2022GB007382. Epub 2022 Nov 10. Global Biogeochem Cycles. 2022. PMID: 37034112 Free PMC article.
-
Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton.ISME J. 2024 Jan 8;18(1):wrae163. doi: 10.1093/ismejo/wrae163. ISME J. 2024. PMID: 39141834 Free PMC article.
-
Multiomics in the central Arctic Ocean for benchmarking biodiversity change.PLoS Biol. 2022 Oct 17;20(10):e3001835. doi: 10.1371/journal.pbio.3001835. eCollection 2022 Oct. PLoS Biol. 2022. PMID: 36251644 Free PMC article.
-
Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans.Nat Microbiol. 2023 Nov;8(11):2050-2066. doi: 10.1038/s41564-023-01498-5. Epub 2023 Oct 16. Nat Microbiol. 2023. PMID: 37845316 Free PMC article.
-
Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach.Nat Protoc. 2024 Jun;19(6):1623-1678. doi: 10.1038/s41596-024-00966-4. Epub 2024 Mar 21. Nat Protoc. 2024. PMID: 38514839 Review.
References
-
- Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003). - DOI
-
- Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020). - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources