Flexible Metamaterial Electronics
- PMID: 35325478
- DOI: 10.1002/adma.202200070
Flexible Metamaterial Electronics
Abstract
Over the last decade, extensive efforts have been made on utilizing advanced materials and structures to improve the properties and functionalities of flexible electronics. While the conventional ways are approaching their natural limits, a revolutionary strategy, namely metamaterials, is emerging toward engineering structural materials to break the existing fetters. Metamaterials exhibit supernatural physical behaviors, in aspects of mechanical, optical, thermal, acoustic, and electronic properties that are inaccessible in natural materials, such as tunable stiffness or Poisson's ratio, manipulating electromagnetic or elastic waves, and topological and programmable morphability. These salient merits motivate metamaterials as a brand-new research direction and have inspired extensive innovative applications in flexible electronics. Here, such a groundbreaking interdisciplinary field is first coined as "flexible metamaterial electronics," focusing on enhancing and innovating functionalities of flexible electronics via the design of metamaterials. Herein, the latest progress and trends in this infant field are reviewed while highlighting their potential value. First, a brief overview starts with introducing the combination of metamaterials and flexible electronics. Then, the developed applications are discussed, such as self-adaptive deformability, ultrahigh sensitivity, and multidisciplinary functionality, followed by the discussion of potential prospects. Finally, the challenges and opportunities facing flexible metamaterial electronics to advance this cutting-edge field are summarized.
Keywords: electronic skin; flexible electronics; metamaterials; micro-/nanofabrication.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio.Nanoscale. 2022 Sep 15;14(35):12677-12691. doi: 10.1039/d2nr02509d. Nanoscale. 2022. PMID: 35972125
-
Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing.Sensors (Basel). 2021 Sep 22;21(19):6329. doi: 10.3390/s21196329. Sensors (Basel). 2021. PMID: 34640647 Free PMC article.
-
Dual-Phase Inspired Soft Electronic Sensors with Programmable and Tunable Mechanical Properties.ACS Nano. 2023 Apr 11;17(7):6423-6434. doi: 10.1021/acsnano.2c11245. Epub 2023 Mar 2. ACS Nano. 2023. PMID: 36861640
-
Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials.Adv Mater. 2021 Nov;33(46):e2007977. doi: 10.1002/adma.202007977. Epub 2021 Jul 1. Adv Mater. 2021. PMID: 34197013 Review.
-
Information Metamaterial Systems.iScience. 2020 Aug 21;23(8):101403. doi: 10.1016/j.isci.2020.101403. Epub 2020 Jul 23. iScience. 2020. PMID: 32777776 Free PMC article. Review.
Cited by
-
Flexible electronics for cardiovascular monitoring on complex physiological skins.iScience. 2024 Aug 12;27(9):110707. doi: 10.1016/j.isci.2024.110707. eCollection 2024 Sep 20. iScience. 2024. PMID: 39262772 Free PMC article. Review.
-
Fabricating biomimetic materials with ice-templating for biomedical applications.Smart Med. 2023 Jul 5;2(3):e20230017. doi: 10.1002/SMMD.20230017. eCollection 2023 Aug. Smart Med. 2023. PMID: 39188345 Free PMC article. Review.
-
Flexible electrochemical energy storage devices and related applications: recent progress and challenges.Chem Sci. 2024 Jun 28;15(29):11229-11266. doi: 10.1039/d4sc02139h. eCollection 2024 Jul 24. Chem Sci. 2024. PMID: 39055032 Free PMC article. Review.
-
Transient charge-driven 3D conformal printing via pulsed-plasma impingement.Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2402135121. doi: 10.1073/pnas.2402135121. Epub 2024 May 21. Proc Natl Acad Sci U S A. 2024. PMID: 38771869
-
Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb.Materials (Basel). 2024 Apr 28;17(9):2083. doi: 10.3390/ma17092083. Materials (Basel). 2024. PMID: 38730890 Free PMC article.
References
-
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang, Z. Gao, M. Liao, J. Wu, J. Wang, X. Xu, Q. Tong, B. Zhang, B. Wang, X. Sun, L. Zhang, Q. Pei, D. Jin, P. Chen, H. Peng, Nature 2021, 591, 240.
-
- A. Hajiaghajani, A. H. Afandizadeh Zargari, M. Dautta, A. Jimenez, F. Kurdahi, P. Tseng, Nat. Electron. 2021, 4, 808.
-
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-i. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838.
-
- Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang, Y. Zhou, C. Hou, Z. Yang, H. Wu, J. Ma, Y. Shen, P. Deng, S. Zhang, T. Duan, Z. Li, J. Ren, L. Xiao, Z. Yin, N. Lu, Y. Huang, Sci. Adv. 2020, 6, eabd0996.
-
- Y. Su, Z. Liu, L. Xu, Adv. Healthcare Mater. 2016, 5, 889.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources