Recent Advances in Polymer Microneedles for Drug Transdermal Delivery: Design Strategies and Applications
- PMID: 35286762
- DOI: 10.1002/marc.202200037
Recent Advances in Polymer Microneedles for Drug Transdermal Delivery: Design Strategies and Applications
Abstract
In recent years, transdermal drug delivery based on microneedles (MNs) technology has received extensive attention, which offers a safer and painless alternative to hypodermic needle injections. They can pierce the stratum corneum and deliver drugs to the epidermis and dermis-structures of skin, showing prominent properties such as minimally invasiveness, bypassing first-pass metabolism, and can be self-administered. A range of materials has been used to fabricate MNs, such as silicon, metal, glass, and polymers. Among them, polymer MNs have gained increasing attention from pharmaceutical and cosmetic companies as one of the promising drug delivery methods. MN products have recently become available on the market, and some of them are under evaluation for efficacy and safety. This paper focuses on the current state of polymer MNs in drug transdermal delivery. The materials and methods for the fabrication of polymer MNs and their drug administration are described. The recent progress of polymer MNs for treatment of cancer, vaccine delivery, blood glucose regulation, androgenetic alopecia, obesity, tissue healing, myocardial infarction, and gout are reviewed. The challenges of MNs technology are summarized and the future development trend of MNs is also prospected.
Keywords: biomedicine; cancer; diabetes; manufacturing methods; microneedles; transdermal delivery.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Biodegradable polymeric insulin microneedles - a design and materials perspective review.Drug Deliv. 2024 Dec;31(1):2296350. doi: 10.1080/10717544.2023.2296350. Epub 2023 Dec 26. Drug Deliv. 2024. PMID: 38147499 Free PMC article. Review.
-
Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery.J Pharm Pharm Sci. 2024 Mar 20;27:12434. doi: 10.3389/jpps.2024.12434. eCollection 2024. J Pharm Pharm Sci. 2024. PMID: 38571937 Free PMC article. Review.
-
Fabrication of coated polymer microneedles for transdermal drug delivery.J Control Release. 2017 Nov 10;265:14-21. doi: 10.1016/j.jconrel.2017.03.383. Epub 2017 Mar 24. J Control Release. 2017. PMID: 28344014
-
Recent advances in porous microneedles: materials, fabrication, and transdermal applications.Drug Deliv Transl Res. 2022 Feb;12(2):395-414. doi: 10.1007/s13346-021-01045-x. Epub 2021 Aug 20. Drug Deliv Transl Res. 2022. PMID: 34415566 Free PMC article. Review.
-
Advances in microneedles for non-transdermal applications.Expert Opin Drug Deliv. 2022 Sep;19(9):1081-1097. doi: 10.1080/17425247.2022.2118711. Epub 2022 Sep 14. Expert Opin Drug Deliv. 2022. PMID: 36031865 Review.
Cited by
-
Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold.Gels. 2024 Jan 15;10(1):65. doi: 10.3390/gels10010065. Gels. 2024. PMID: 38247787 Free PMC article.
-
A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022.Pharmaceuticals (Basel). 2023 Oct 26;16(11):1521. doi: 10.3390/ph16111521. Pharmaceuticals (Basel). 2023. PMID: 38004387 Free PMC article. Review.
-
Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic.Mol Biotechnol. 2024 Dec;66(12):3415-3437. doi: 10.1007/s12033-023-00961-2. Epub 2023 Nov 21. Mol Biotechnol. 2024. PMID: 37987985 Review.
-
Design Principles and Applications of Ionic Liquids for Transdermal Drug Delivery.Adv Sci (Weinh). 2024 Nov;11(43):e2405983. doi: 10.1002/advs.202405983. Epub 2024 Sep 29. Adv Sci (Weinh). 2024. PMID: 39342651 Free PMC article. Review.
-
Poly(2-Hydroxyethyl Methacrylate) Hydrogel-Based Microneedles for Metformin Release.Glob Chall. 2023 Jul 5;7(8):2300002. doi: 10.1002/gch2.202300002. eCollection 2023 Aug. Glob Chall. 2023. PMID: 37635699 Free PMC article.
References
-
- P. Makvandi, R. Jamaledin, G. J. Chen, Z. Baghbantaraghdari, E. N. Zare, C. Di Natale, V. Onesto, R. Vecchione, J. Lee, F. R. Tay, P. Netti, V. Mattoli, A. Jaklenec, Z. Gu, R. Langer, Mater. Today 2021, 47, 206.
-
- B. Homayun, X. Lin, H.-J. Choi, Pharmaceutics 2019, 11, 129.
-
- C. Stillhart, K. Vučićević, P. Augustijns, A. W. Basit, H. Batchelor, T. R. Flanagan, I. Gesquiere, R. Greupink, D. Keszthelyi, M. Koskinen, C. M. Madla, C. Matthys, G. Miljuš, M. G. Mooij, N. Parrott, A.-L. Ungell, S. N. De Wildt, M. Orlu, S. Klein, A. Müllertz, Eur. J. Pharm. Sci. 2020, 147, 105280.
-
- M.-Y. Shen, T.-I. Liu, T.-W. Yu, R. Kv, W.-H. Chiang, Y.-C. Tsai, H.-H. Chen, S.-C. Lin, H.-C. Chiu, Biomaterials 2019, 197, 86.
-
- F. K. Aldawood, A. Andar, S. Desai, Polymers 2021, 13, 2815.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources