Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events
- PMID: 35274958
- DOI: 10.1021/acs.jctc.1c00143
Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events
Abstract
Computing accurate reaction rates is a central challenge in computational chemistry and biology because of the high cost of free energy estimation with unbiased molecular dynamics. In this work, a data-driven machine learning algorithm is devised to learn collective variables with a multitask neural network, where a common upstream part reduces the high dimensionality of atomic configurations to a low dimensional latent space and separate downstream parts map the latent space to predictions of basin class labels and potential energies. The resulting latent space is shown to be an effective low-dimensional representation, capturing the reaction progress and guiding effective umbrella sampling to obtain accurate free energy landscapes. This approach is successfully applied to model systems including a 5D Müller Brown model, a 5D three-well model, the alanine dipeptide in vacuum, and an Au(110) surface reconstruction unit reaction. It enables automated dimensionality reduction for energy controlled reactions in complex systems, offers a unified and data-efficient framework that can be trained with limited data, and outperforms single-task learning approaches, including autoencoders.
Similar articles
-
MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation.J Chem Inf Model. 2022 Jan 10;62(1):1-8. doi: 10.1021/acs.jcim.1c01010. Epub 2021 Dec 23. J Chem Inf Model. 2022. PMID: 34939790
-
Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables.J Phys Chem B. 2020 May 7;124(18):3647-3660. doi: 10.1021/acs.jpcb.0c01218. Epub 2020 Apr 27. J Phys Chem B. 2020. PMID: 32275148
-
Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.J Comput Chem. 2018 Sep 30;39(25):2079-2102. doi: 10.1002/jcc.25520. Epub 2018 Oct 14. J Comput Chem. 2018. PMID: 30368832
-
Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning.J Phys Chem Lett. 2024 Feb 15;15(6):1774-1783. doi: 10.1021/acs.jpclett.3c03542. Epub 2024 Feb 8. J Phys Chem Lett. 2024. PMID: 38329095 Review.
-
Neural Network Potentials: A Concise Overview of Methods.Annu Rev Phys Chem. 2022 Apr 20;73:163-186. doi: 10.1146/annurev-physchem-082720-034254. Epub 2022 Jan 4. Annu Rev Phys Chem. 2022. PMID: 34982580 Review.
Cited by
-
Discovering Reaction Pathways, Slow Variables, and Committor Probabilities with Machine Learning.J Chem Theory Comput. 2023 Jul 25;19(14):4414-4426. doi: 10.1021/acs.jctc.3c00028. Epub 2023 May 24. J Chem Theory Comput. 2023. PMID: 37224455 Free PMC article.
-
Reaction Coordinates for Conformational Transitions Using Linear Discriminant Analysis on Positions.J Chem Theory Comput. 2023 Jul 25;19(14):4427-4435. doi: 10.1021/acs.jctc.3c00051. Epub 2023 May 2. J Chem Theory Comput. 2023. PMID: 37130367 Free PMC article.
-
Challenges and frontiers of computational modelling of biomolecular recognition.QRB Discov. 2022;3:e13. doi: 10.1017/qrd.2022.11. Epub 2022 Aug 19. QRB Discov. 2022. PMID: 37377636 Free PMC article.
-
Improved Sampling of Adaptive Path Collective Variables by Stabilized Extended-System Dynamics.J Chem Theory Comput. 2023 Dec 26;19(24):9202-9210. doi: 10.1021/acs.jctc.3c00938. Epub 2023 Dec 11. J Chem Theory Comput. 2023. PMID: 38078670 Free PMC article.
-
OneOPES, a Combined Enhanced Sampling Method to Rule Them All.J Chem Theory Comput. 2023 Sep 12;19(17):5731-5742. doi: 10.1021/acs.jctc.3c00254. Epub 2023 Aug 21. J Chem Theory Comput. 2023. PMID: 37603295 Free PMC article.