Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb;10(2):146-153.
doi: 10.1158/2326-6066.CIR-21-0515. Epub 2021 Dec 22.

Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade

Affiliations
Review

Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade

Natalija Budimir et al. Cancer Immunol Res. 2022 Feb.

Abstract

Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized the treatment of many types of cancer over the past decade. The initial therapeutic hypothesis underlying the mechanism of anti-PD-1/PD-L1 ICB was built around the premise that it acts locally in the tumor, reversing the exhaustion of PD-1hiCD8+ T cells by "releasing the brakes." However, recent studies have provided unprecedented insight into the complexity within the CD8+ T-cell pool in the tumor microenvironment (TME). Single-cell RNA sequencing and epigenetic profiling studies have identified novel cell surface markers, revealing heterogeneity within CD8+ T-cell states classified as unique. Moreover, these studies highlighted that following ICB, CD8+ T-cell states within and outside the TME possess a differential capacity to respond, mobilize to the TME, and seed an effective antitumor immune response. In aggregate, these recent developments have led to a reevaluation of our understanding of both the underlying mechanisms and the sites of action of ICB therapy. Here, we discuss the evidence for the reversibility of CD8+ T-cell exhaustion after ICB treatment and its implication for the further development of cancer immunotherapy.

PubMed Disclaimer

Similar articles

Cited by

References

    1. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.
    1. Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann A, et al. Exhaustion-associated regulatory regions in CD8(+) tumor-infiltrating T cells. Proc Natl Acad Sci U S A. 2017;114:E2776–E85.
    1. Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J Immunol. 2009;182:6697–708.
    1. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–13.
    1. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003;77:4911–27.

Publication types

MeSH terms

Substances

LinkOut - more resources