SUMO-SIM interactions: From structure to biological functions
- PMID: 34840078
- DOI: 10.1016/j.semcdb.2021.11.007
SUMO-SIM interactions: From structure to biological functions
Abstract
Post-translational modification by Small Ubiquitin-like Modifier (SUMO) proteins regulates numerous cellular processes. This modification involves the covalent and reversible attachment of SUMO to target proteins through an isopeptide bond, using a cascade of E1, E2 and E3 SUMOylation enzymes. Most functions of SUMO depend on the establishment of non-covalent protein-protein interactions between SUMOylated substrates and their binding partners. The vast majority of these interactions involve a conserved surface in the SUMO protein and a SUMO interacting motif (SIM), a short stretch of hydrophobic amino acids and an acidic region, in the interactor protein. Despite single SUMO-SIM interactions are relatively weak, they can have a huge impact at different levels, altering the activity, localization and stability of proteins, triggering the formation of macromolecular assemblies or inducing phase separation. Moreover, SUMO-SIM interactions are ubiquitous in most enzymes of the SUMO pathway, and play essential roles in SUMO conjugation and deconjugation. Here, we analyze the role of SUMO-SIM contacts in SUMO enzymes and targets and discuss how this humble interaction participates in SUMOylation reactions and mediates the outcome of this essential post-translational modification.
Keywords: E3 ligase; SUMO; SUMO interacting motif; protein-protein interaction; ubiquitin.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Similar articles
-
Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.J Biol Chem. 2017 Jun 16;292(24):10230-10238. doi: 10.1074/jbc.M117.789982. Epub 2017 Apr 28. J Biol Chem. 2017. PMID: 28455449 Free PMC article.
-
Molecular mechanisms in SUMO conjugation.Biochem Soc Trans. 2020 Feb 28;48(1):123-135. doi: 10.1042/BST20190357. Biochem Soc Trans. 2020. PMID: 31872228 Review.
-
SUMO Interacting Motifs: Structure and Function.Cells. 2021 Oct 21;10(11):2825. doi: 10.3390/cells10112825. Cells. 2021. PMID: 34831049 Free PMC article. Review.
-
Rhes, a striatal enriched protein, regulates post-translational small-ubiquitin-like-modifier (SUMO) modification of nuclear proteins and alters gene expression.Cell Mol Life Sci. 2024 Apr 8;81(1):169. doi: 10.1007/s00018-024-05181-8. Cell Mol Life Sci. 2024. PMID: 38589732 Free PMC article.
-
SUMO: From Bench to Bedside.Physiol Rev. 2020 Oct 1;100(4):1599-1619. doi: 10.1152/physrev.00025.2019. Physiol Rev. 2020. PMID: 32666886 Free PMC article. Review.
Cited by
-
Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer.Cells. 2023 Oct 20;12(20):2495. doi: 10.3390/cells12202495. Cells. 2023. PMID: 37887339 Free PMC article.
-
The SUMOylation of Human Cytomegalovirus Capsid Assembly Protein Precursor (UL80.5) Affects Its Interaction with Major Capsid Protein (UL86) and Viral Replication.Viruses. 2023 Apr 7;15(4):931. doi: 10.3390/v15040931. Viruses. 2023. PMID: 37112911 Free PMC article.
-
SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1.Cell Death Differ. 2023 Jul;30(7):1742-1756. doi: 10.1038/s41418-023-01175-4. Epub 2023 May 15. Cell Death Differ. 2023. PMID: 37188742 Free PMC article.
-
SUMOylation inhibitor TAK-981 (subasumstat) synergizes with 5-azacytidine in preclinical models of acute myeloid leukemia.Haematologica. 2024 Jan 1;109(1):98-114. doi: 10.3324/haematol.2023.282704. Haematologica. 2024. PMID: 37608777 Free PMC article.
-
Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates?Pharmacol Rev. 2023 Sep;75(5):979-1006. doi: 10.1124/pharmrev.122.000784. Epub 2023 May 3. Pharmacol Rev. 2023. PMID: 37137717 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources