Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec:394:367-80.
doi: 10.1113/jphysiol.1987.sp016875.

Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus

Affiliations

Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus

W C Abraham et al. J Physiol. 1987 Dec.

Abstract

1. Tetanization of hippocampal pyramidal cell afferents travelling in stratum radiatum of area CA1 induces both long-term potentiation (l.t.p.) of extracellularly recorded excitatory postsynaptic potentials (e.p.s.p.s), and an increase in the number of cells firing, as measured by the extracellular population spike, for a given sized field e.p.s.p. The mechanism of this latter change, known as e.p.s.p.-spike (E-S) potentiation, was investigated in the guinea-pig hippocampal slice preparation. 2. Plots of the E-S relation before and after tetanization were constructed from measures taken over a series of stimulus strengths. Tetanization of afferents in stratum radiatum decreased the spike threshold by 24%, while the gamma-aminobutyric acid antagonist picrotoxin (PTX) decreased spike threshold by 72%. Sequential administration of PTX and tetanization, in either order, resulted in no more change in the E-S threshold than did PTX application alone. 3. Extracellular synaptic potentials, matched for initial slope before and after tetanization by adjusting the stimulus strength, showed an increased peak amplitude and increased peak latency following tetanization. PTX produced similar but larger percentage changes. Tetanization in the presence of PTX, however, did not alter the field potential wave shape. 4. Intracellular postsynaptic potentials (p.s.p.s) were also matched for initial slope before and after tetanization. Tetanization induced p.s.p. shape changes similar to those observed extracellularly, i.e. in the direction of less inhibition. Such changes did not occur in the presence of PTX. 5. Inhibitory p.s.p.s (i.p.s.p.s) were studied in depolarized pyramidal cells with microelectrodes filled with QX-314. Tetanization of afferents in stratum radiatum produced i.p.s.p. increases in eight of nineteen cells. These increases were generally attributable to an increased activity in the recurrent inhibitory pathway. Tetanization of the alveus failed to produce any lasting increases in the i.p.s.p. amplitude. 6. Tetanization of afferents in stratum radiatum decreased the ratio of the intracellular i.p.s.p. to field e.p.s.p. over stimulus strengths below population spike threshold. Above population spike threshold, the ratio tended towards its pretetanization level. 7. The results indicate that E-S potentiation results from an increase in the level of depolarization reached by a synaptic potential of given initial slope. These findings support the hypothesis that tetanization induces greater l.t.p. of excitatory inputs onto pyramidal cells than of inputs onto feed-forward inhibitory interneurones.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brain Res. 1979 May 18;168(1):205-9 - PubMed
    1. Exp Neurol. 1978 Jan 15;58(2):242-50 - PubMed
    1. Brain Res. 1980 Jul 21;194(1):181-91 - PubMed
    1. J Physiol. 1980 May;302:463-82 - PubMed
    1. J Neurophysiol. 1981 Aug;46(2):339-55 - PubMed

Publication types

LinkOut - more resources