Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 8:12:711943.
doi: 10.3389/fgene.2021.711943. eCollection 2021.

CYP3A422 Genotyping in Clinical Practice: Ready for Implementation?

Affiliations
Review

CYP3A422 Genotyping in Clinical Practice: Ready for Implementation?

Tessa A M Mulder et al. Front Genet. .

Abstract

Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A422 allele, led to several studies into the pharmacogenetic effect of CYP3A422 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A422. This information may help in deciding if, and for which drugs, CYP3A422 genotype-based dosing could be helpful in improving drug therapy. CYP3A422 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A422 genotype-based dosing.

Keywords: CYP3A4; CYP3A4∗22; cytochrome P450; genotype-guided dosing; genotyping; personalized medicine; pharmacogenetics; rs35599367.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

References

    1. Amirimani B., Walker A. H., Weber B. L., Rebbeck T. R. (1999). RESPONSE: re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 91 1588–1590. 10.1093/jnci/91.18.1588 - DOI - PubMed
    1. Antunes M. V., De Oliveira V., Raymundo S., Staudt D. E., Gössling G., Biazús J. V., et al. (2015). CYP3A4∗22 is related to increased plasma levels of 4-hydroxytamoxifen and partially compensates for reduced CYP2D6 activation of tamoxifen. Pharmacogenomics 16 601–617. 10.2217/pgs.15.13 - DOI - PubMed
    1. Apellániz-Ruiz M., Lee M. Y., Sánchez-Barroso L., Gutiérrez-Gutiérrez G., Calvo I., García-Estévez L., et al. (2015). Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin. Cancer Res. 21 322–328. 10.1158/1078-0432.ccr-14-1758 - DOI - PubMed
    1. Ball S. E., Scatina J., Kao J., Ferron G. M., Fruncillo R., Mayer P., et al. (1999). Population distribution and effects on drug metabolism of a genetic variant in the 5’ promoter region of CYP3A4. Clin. Pharmacol. Ther. 66 288–294. 10.1016/s0009-9236(99)70037-8 - DOI - PubMed
    1. Barratt D. T., Bandak B., Klepstad P., Dale O., Kaasa S., Christrup L. L., et al. (2014). Genetic, pathological and physiological determinants of transdermal fentanyl pharmacokinetics in 620 cancer patients of the EPOS study. Pharmacogenet. Genom. 24 185–194. 10.1097/fpc.0000000000000032 - DOI - PubMed

LinkOut - more resources