Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 16;86(14):9490-9502.
doi: 10.1021/acs.joc.1c00775. Epub 2021 Jun 29.

Unexpected Substituent Effects in Spiro-Compound Formation: Steering N-Aryl Propynamides and DMSO toward Site-Specific Sulfination in Quinolin-2-ones or Spiro[4,5]trienones

Affiliations

Unexpected Substituent Effects in Spiro-Compound Formation: Steering N-Aryl Propynamides and DMSO toward Site-Specific Sulfination in Quinolin-2-ones or Spiro[4,5]trienones

Xiaoxian Li et al. J Org Chem. .

Abstract

A highly substituent-dependent rearrangement allows for the novel and SOCl2-induced divergent synthesis of 3-methylthioquinolin-2-ones and 3-methylthiospiro[4.5]trienones through intramolecular electrophilic cyclization of N-aryl propyamides. DMSO acts as both solvent and sulfur source, and use of DMSO-h6/d6 enables the incorporation of SCH3 or SCD3 moieties to the 3-position of the heterocyclic framework. Different para-substituents trigger divergent reaction pathways leading to the formation of quinolin-2-ones for mild substituents and spiro[4,5]trienones for both electron-withdrawing and -donating substituents, respectively. On the basis of both computational and experimental results, a new mechanism has been put forward that accounts for the exclusive spirolization/defluorination process and the surprising substituent effects.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Strategies for the Synthesis of 3-Sulfenylated Quinolin-2-ones and Azaspiro[4,5]trienones
Scheme 2
Scheme 2. Reported Mechanistic Pathways of Defluorination
Scheme 3
Scheme 3. Proposed Mechanistic Pathways: (Top) Initial, Incorrect Hypothesis; (Bottom) Detailed Routes Leading to Either 2a or 3a in Highly Substituent-Dependent Manners
Figure 1
Figure 1
Free energy profile (kcal/mol) of the formation of intermediate D or 3-(methylthio) spiro[4,5]trienone 3a.
Scheme 4
Scheme 4. Control Experiment Confirming That DMSO Is the Oxygen Source

Similar articles

Cited by

References

    1. Khan S. R.; Mhaka A.; Pili R.; Isaacs J. T. Modified synthesis and antiangiogenic activity of linomide. Bioorg. Med. Chem. Lett. 2001, 11, 451–452. 10.1016/S0960-894X(00)00699-5. - DOI - PubMed
    2. Jonsson S.; Andersson G.; Fex T.; Fristedt T.; Hedlund G.; Jansson K.; Abramo L.; Fritzson I.; Pekarski O.; Runstrom A.; Sandin H.; Thuvesson I.; Bjork A. Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J. Med. Chem. 2004, 47, 2075–2088. 10.1021/jm031044w. - DOI - PubMed
    3. Natsugari H.; Ikeura Y.; Kiyota Y.; Ishichi Y.; Ishimaru T.; Saga O.; Shirafuji H.; Tanaka T.; Kamo I.; Doi T.; Otsuka M. Novel, potent, and orally-active substance-P antagonists-synthesis and antagonist activity of N-benzylcarboxamide derivatives of pyrido [3,4-b] pyridine. J. Med. Chem. 1995, 38, 3106–3120. 10.1021/jm00016a014. - DOI - PubMed
    4. Řehulka J.; Vychodilová K.; Krejčí P.; Gurská S.; Hradil P.; Hajdúch M.; Džubák P.; Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2020, 192, 112176.10.1016/j.ejmech.2020.112176. - DOI - PubMed
    1. DeVita R. J.; Hollings D. D.; Goulet M. T.; Wyvratt M. J.; Fisher M. H.; Lo J. L.; Yang Y. T.; Cheng K.; Smith R. G. Identification and initial structure-activity relationships of a novel non-peptide quinolone GnRH receptor antagonist. Bioorg. Med. Chem. Lett. 1999, 9, 2615–2620. 10.1016/S0960-894X(99)00446-1. - DOI - PubMed
    2. Aleksic M.; Bertosa B.; Nhili R.; Uzelac L.; Jarak I.; Depauw S.; David-Cordonnier M. H.; Kralj M.; Tomic S.; Karminski-Zamola G. Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis. J. Med. Chem. 2012, 55, 5044–5060. 10.1021/jm300505h. - DOI - PubMed
    3. Lee J.-F.; Chang T.-Y.; Liu Z.-F.; Lee N.-Z.; Yeh Y.-H.; Chen Y.-S.; Chen T.-C.; Chou H.-S.; Li T.-K.; Lee S.-B.; Lin M.-H. Design, synthesis, and biological evaluation of heterotetracyclic quinolinone derivatives as anticancer agents targeting topoisomerases. Eur. J. Med. Chem. 2020, 190, 112074.10.1016/j.ejmech.2020.112074. - DOI - PubMed
    1. Tedesco R.; Shaw A. N.; Bambal R.; Chai D. P.; Concha N. O.; Darcy M. G.; Dhanak D.; Fitch D. M.; Gates A.; Gerhardt W. G.; Halegoua D. L.; Han C.; Hofmann G. A.; Johnston V. K.; Kaura A. C.; Liu N. N.; Keenan R. M.; Lin-Goerke J.; Sarisky R. T.; Wiggall K. J.; Zimmerman M. N.; Duffy K. J. 3-(1,1-Dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2006, 49, 971–983. 10.1021/jm050855s. - DOI - PubMed
    1. Crawley G. C.; Briggs M. T.; Dowell R. I.; Edwards P. N.; Hamilton P. M.; Kingston J. F.; Oldham K.; Waterson D.; Whalley D. P. 4-Methoxy-2-methyltetrahydropyrans-chiral leukotriene biosynthesis inhibitors, related to ICI D2138, which display enantioselectivity. J. Med. Chem. 1993, 36, 295–296. 10.1021/jm00054a016. - DOI - PubMed
    2. Shiro T.; Takahashi H.; Kakiguchi K.; Inoue Y.; Masuda K.; Nagata H.; Tobe M. Synthesis and SAR study of imidazoquinolines as a novel structural class of microsomal prostaglandin E2 synthase-1 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 285–288. 10.1016/j.bmcl.2011.11.015. - DOI - PubMed
    3. Shiro T.; Kakiguchi K.; Takahashi H.; Nagata H.; Tobe M. Synthesis and biological evaluation of substituted imidazoquinoline derivatives as mPGES-1 inhibitors. Bioorg. Med. Chem. 2013, 21, 2068–2078. 10.1016/j.bmc.2013.01.018. - DOI - PubMed
    1. Ikuma Y.; Hochigai H.; Kimura H.; Nunami N.; Kobayashi T.; Uchiyama K.; Furuta Y.; Sakai M.; Horiguchi M.; Masui Y.; Okazaki K.; Sato Y.; Nakahira H. Discovery of 3H-imidazo[4,5-c]quinolin-4(5H)-ones as potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg. Med. Chem. 2012, 20, 5864–5883. 10.1016/j.bmc.2012.07.046. - DOI - PubMed
    2. Ikuma Y.; Nakahira H. Preparation of 2-aminosubstituted 3H-imidazo[4,5-c]quinolin-4(5H)-ones by palladium-assisted internal biaryl coupling reaction. Tetrahedron 2011, 67, 9509–9517. 10.1016/j.tet.2011.10.015. - DOI

Publication types