Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 9:12:673472.
doi: 10.3389/fneur.2021.673472. eCollection 2021.

Structural and Functional Alterations in Visual Pathway After Optic Neuritis in MOG Antibody Disease: A Comparative Study With AQP4 Seropositive NMOSD

Affiliations

Structural and Functional Alterations in Visual Pathway After Optic Neuritis in MOG Antibody Disease: A Comparative Study With AQP4 Seropositive NMOSD

Chenyang Gao et al. Front Neurol. .

Abstract

Background: Optic neuritis (ON) is an important clinical manifestation of neuromyelitis optic spectrum disease (NMOSD). Myelin oligodendrocyte glycoprotein (MOG) antibody-related and aquaporin 4 (AQP4) antibody-related ON show different disease patterns. The aim of this study was to explore the differences in structure and function of the visual pathway in patients with ON associated with MOG and AQP4 antibodies. Methods: In this prospective study, we recruited 52 subjects at Beijing Tiantan Hospital, including 11 with MOG Ig+ ON (MOG-ON), 13 with AQP4 Ig+ ON (AQP4-ON), and 28 healthy controls (HCs). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of optic radiation (OR), primary visual cortex volume (V1), brain volume, and visual acuity (VA) were compared among groups. A multiple linear regression was used to explore associations between VA and predicted factors. In addition, we used optical coherence tomography (OCT) to examine thickness of the peripapillary retinal nerve fiber layer (pRNFL) and retinal ganglion cell complex (GCC) in a separate cohort consisting of 15 patients with ON (8 MOG-ON and 7 AQP4-ON) and 28 HCs. Results: Diffusion tensor imaging showed that the FA of OR was lower than controls in patients with AQP4-ON (p = 0.001) but not those with MOG-ON (p = 0.329) and was significantly different between the latter two groups (p = 0.005), while V1 was similar in patients with MOG-ON and AQP4-ON (p = 0.122), but was lower than controls in AQP4-ON (p = 0.002) but not those with MOG-ON (p = 0.210). The VA outcomes were better in MOG-ON than AQP4-ON, and linear regression analysis revealed that VA in MOG-ON and AQP4-ON was both predicted by the FA of OR (standard β = -0.467 and -0.521, p = 0.036 and 0.034). Both patients of MOG-ON and AQP4-ON showed neuroaxonal damage in the form of pRNFL and GCC thinning but showed no statistically significant difference (p = 0.556, 0.817). Conclusion: The structural integrity of OR in patients with MOG-ON, which is different from the imaging manifestations of AQP4-ON, may be a reason for the better visual outcomes of patients with MOG-ON.

Keywords: AQP4-ON; MOG-ON; diffusion tensor imaging; optic radiation; optical coherence tomography; visual acuity.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of cohort selection. ON, optic neuritis; AQP4, aquaporin-4; MOG, myelin oligodendrocyte glycoprotein; MOG-ON, optic neuritis patients with MOG antibody; MOG-NON, patients with MOG antibody positive without a history of ON; AQP4-ON, NMOSD patients with AQP4 antibody positive and a history of ON; AQP4-NON, NMOSD patients with AQP4 antibody positive but no history of ON; VA, visual acuity; OCT, optical coherence tomography.
Figure 2
Figure 2
DTI results. Boxplot of mean FA values (A), MD values (B), AD values (C), and RD values (D) for posterior thalamic radiation (include OR) in MOG-ON (left, white), HCs (middle, light blue), and AQP4-ON (right, dark blue). FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; HC, healthy control; MOG-ON, optic neuritis patients with MOG antibody; AQP4-ON, NMOSD patients with AQP4 antibody positive and a history of ON; OR, optic neuritis.
Figure 3
Figure 3
V1 and brain volume in patients and HCs. Boxplot of V1 (A) and brain volume (B) in MOG-ON (left, white), HCs (middle, light blue), and AQP4-ON (right, dark blue). V1, primary visual cortex volume; brain volume, whole brain volume including gray matter and white matter; HC, healthy control; MOG-ON, optic neuritis patients with MOG antibody; AQP4-ON, NMOSD patients with AQP4 antibody positive and a history of ON; OR, optic neuritis.
Figure 4
Figure 4
Visual outcomes in MOG-ON and AQP4-ON patients. Histogram of the number of patients with MOG-ON and AQP4-ON in the VA ≤ 20/200 (superior, light blue), VA <20/40 (middle, light gray), and VA ≥ 20/40 (inferior, dark blue) intervals; VA, visual acuity; MOG-ON, optic neuritis patients with MOG antibody; AQP4-ON, NMOSD patients with AQP4 antibody positive and a history of ON; OR, optic neuritis.
Figure 5
Figure 5
OCT results in patients and HCs. Boxplot of V1 (A) and brain volume (B) in MOG-ON (left, white), HCs (middle, light blue), and AQP4-ON (right, dark blue). pRNFL, peripapillary retinal nerve fiber layer thickness; GCC, retinal ganglion cell complex; HC, healthy control; MOG-ON, optic neuritis patients with MOG antibody; AQP4-ON, NMOSD patients with AQP4 antibody positive and a history of ON; OR, optic neuritis.

Similar articles

Cited by

References

    1. Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol. (2014) 176:149–64. 10.1111/cei.12271 - DOI - PMC - PubMed
    1. Finke C, Zimmermann H, Pache F, Oertel FC, Chavarro VS, Kramarenko Y, et al. . Association of visual impairment in neuromyelitis optica spectrum disorder with visual network reorganization. JAMA Neurol. (2018) 75:296–303. 10.1001/jamaneurol.2017.3890 - DOI - PMC - PubMed
    1. Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm. (2015) 2:e110. 10.1212/NXI.0000000000000110 - DOI - PMC - PubMed
    1. Metz I, Beissbarth T, Ellenberger D, Pache F, Stork L, Ringelstein M, et al. . Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. (2016) 3:e204. 10.1212/NXI.0000000000000204 - DOI - PMC - PubMed
    1. Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, et al. . Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation. (2011) 8:184. 10.1186/1742-2094-8-184 - DOI - PMC - PubMed