Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2021 May 13:2021.05.12.443948.
doi: 10.1101/2021.05.12.443948.

Plasmacytoid dendritic cells produce type I interferon and reduce viral replication in airway epithelial cells after SARS-CoV-2 infection

Plasmacytoid dendritic cells produce type I interferon and reduce viral replication in airway epithelial cells after SARS-CoV-2 infection

Luisa Cervantes-Barragan et al. bioRxiv. .

Abstract

Infection with SARS-CoV-2 has caused a pandemic of unprecedented dimensions. SARS-CoV-2 infects airway and lung cells causing viral pneumonia. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with inborn errors of type I IFN response or auto-antibodies against IFN-α. Plasmacytoid dendritic cells (pDCs) are a unique immune cell population specialized in recognizing and controlling viral infections through the production of high concentrations of type I IFN. In this study, we isolated pDCs from healthy donors and showed that pDCs are able to recognize SARS-CoV-2 and rapidly produce large amounts of type I IFN. Sensing of SARS-CoV-2 by pDCs was independent of viral replication since pDCs were also able to recognize UV-inactivated SARS-CoV-2 and produce type I IFN. Transcriptional profiling of SARS-CoV-2 and UV-SARS-CoV-2 stimulated pDCs also showed a rapid type I and III IFN response as well as induction of several chemokines, and the induction of apoptosis in pDCs. Moreover, we modeled SARS-CoV-2 infection in the lung using primary human airway epithelial cells (pHAEs) and showed that co-culture of pDCs with SARS-CoV-2 infected pHAEs induces an antiviral response and upregulation of antigen presentation in pHAE cells. Importantly, the presence of pDCs in the co-culture results in control of SARS-CoV-2 replication in pHAEs. Our study identifies pDCs as one of the key cells that can recognize SARS-CoV-2 infection, produce type I and III IFN and control viral replication in infected cells.

Importance: Type I interferons (IFNs) are a major part of the innate immune defense against viral infections. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with defects in the type I IFN response. Interestingly, many cells are not able to produce type I IFN after being infected with SARS-CoV-2 and cannot control viral infection. In this study we show that plasmacytoid dendritic cells are able to recognize SARS-CoV-2 and produce type I IFN, and that pDCs are able to help control viral infection in SARS-CoV-2 infected airway epithelial cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources