The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)- block-poly(d,l-lactic acid) in rat
- PMID: 33996412
- PMCID: PMC8105770
- DOI: 10.1016/j.apsb.2021.02.018
The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)- block-poly(d,l-lactic acid) in rat
Abstract
Monomethoxy poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-PLA) is a typical amphiphilic di-block copolymer widely used as a nanoparticle carrier (nanocarrier) in drug delivery. Understanding the in vivo fate of PEG-PLA is required to evaluate its overall safety and promote the development of PEG-PLA-based nanocarrier drug delivery systems. However, acquiring such understanding is limited by the lack of a suitable analytical method for the bioassay of PEG-PLA. In this study, the pharmacokinetics, biodistribution, metabolism and excretion of PEG-PLA were investigated in rat after intravenous administration. The results show that unchanged PEG-PLA is mainly distributed to spleen, liver, and kidney before being eliminated in urine over 48 h mainly (>80%) in the form of its PEG metabolite. Our study provides a clear and comprehensive picture of the in vivo fate of PEG-PLA which we anticipate will facilitate the scientific design and safety evaluation of PEG-PLA-based nanocarrier drug delivery systems and thereby enhance their clinical development.
Keywords: Biodistribution; Excretion; Metabolism; Monomethoxy poly(ethylene glycol)-block-poly(d,l-lactic acid); Nanocarrier material; Pharmacokinetics; Polymer; Rat.
© 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
Figures
Similar articles
-
Emerging uses of PLA-PEG copolymer in cancer drug delivery.3 Biotech. 2022 Feb;12(2):41. doi: 10.1007/s13205-021-03105-y. Epub 2022 Jan 10. 3 Biotech. 2022. PMID: 35070631 Free PMC article. Review.
-
Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery.Biomaterials. 2009 Jun;30(16):3009-19. doi: 10.1016/j.biomaterials.2009.02.011. Epub 2009 Feb 27. Biomaterials. 2009. PMID: 19250665
-
Poly(ethylene glycol)-block-poly(d,l-lactic acid) micelles containing oligo(lactic acid)8-paclitaxel prodrug: In Vivo conversion and antitumor efficacy.J Control Release. 2019 Mar 28;298:186-193. doi: 10.1016/j.jconrel.2019.02.017. Epub 2019 Feb 18. J Control Release. 2019. PMID: 30790593 Free PMC article.
-
Mesoscopic Structures of Poly(carboxybetaine) Block Copolymer and Poly(ethylene glycol) Block Copolymer in Solutions.Langmuir. 2017 Aug 1;33(30):7575-7582. doi: 10.1021/acs.langmuir.7b01610. Epub 2017 Jul 17. Langmuir. 2017. PMID: 28689413
-
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17. Eur J Pharm Biopharm. 2013. PMID: 23872180 Review.
Cited by
-
Exploiting Metabolic Defects in Glioma with Nanoparticle-Encapsulated NAMPT Inhibitors.Mol Cancer Ther. 2024 Aug 1;23(8):1176-1187. doi: 10.1158/1535-7163.MCT-24-0012. Mol Cancer Ther. 2024. PMID: 38691846 Free PMC article.
-
Editorial of Special Issue "The Biological Fate of Drug Nanocarriers".Acta Pharm Sin B. 2021 Apr;11(4):850-851. doi: 10.1016/j.apsb.2021.04.004. Epub 2021 May 1. Acta Pharm Sin B. 2021. PMID: 33996403 Free PMC article. No abstract available.
-
The Biological Fate of Pharmaceutical Excipient β-Cyclodextrin: Pharmacokinetics, Tissue Distribution, Excretion, and Metabolism of β-Cyclodextrin in Rats.Molecules. 2022 Feb 8;27(3):1138. doi: 10.3390/molecules27031138. Molecules. 2022. PMID: 35164401 Free PMC article.
-
Emerging uses of PLA-PEG copolymer in cancer drug delivery.3 Biotech. 2022 Feb;12(2):41. doi: 10.1007/s13205-021-03105-y. Epub 2022 Jan 10. 3 Biotech. 2022. PMID: 35070631 Free PMC article. Review.
-
Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function.Nat Nanotechnol. 2024 Mar;19(3):376-386. doi: 10.1038/s41565-023-01551-8. Epub 2023 Dec 29. Nat Nanotechnol. 2024. PMID: 38158436
References
-
- Zhao Q.H., Qiu L.Y. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles. Curr Drug Metab. 2013;14:832–839. - PubMed
-
- Wang A.Z., Langer R., Farokhzad O.C. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–198. - PubMed
-
- Liu G.W., Prossnitz A.N., Eng D.G., Cheng Y., Subrahmanyam N., Pippin J.W. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials. 2018;178:317–325. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources