Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor
- PMID: 33820980
- DOI: 10.1038/s41551-021-00706-z
Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Similar articles
-
Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor.Nat Biomed Eng. 2019 Jun;3(6):427-437. doi: 10.1038/s41551-019-0371-x. Epub 2019 Mar 25. Nat Biomed Eng. 2019. PMID: 31097816 Free PMC article.
-
One-base-mismatch CRISPR-based transistors for single nucleotide resolution assay.Biosens Bioelectron. 2024 Oct 15;262:116548. doi: 10.1016/j.bios.2024.116548. Epub 2024 Jul 2. Biosens Bioelectron. 2024. PMID: 38986250
-
Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors.ACS Sens. 2019 Feb 22;4(2):286-293. doi: 10.1021/acssensors.8b00344. Epub 2019 Feb 5. ACS Sens. 2019. PMID: 30672282
-
Optimization of genome editing through CRISPR-Cas9 engineering.Bioengineered. 2016 Apr;7(3):166-74. doi: 10.1080/21655979.2016.1189039. Bioengineered. 2016. PMID: 27340770 Free PMC article. Review.
-
Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage.Curr Opin Struct Biol. 2020 Jun;62:166-174. doi: 10.1016/j.sbi.2020.01.013. Epub 2020 Feb 18. Curr Opin Struct Biol. 2020. PMID: 32070859 Free PMC article. Review.
Cited by
-
Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing.CRISPR J. 2021 Jun;4(3):400-415. doi: 10.1089/crispr.2020.0137. CRISPR J. 2021. PMID: 34152221 Free PMC article.
-
Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes.Small. 2023 Sep;19(38):e2300328. doi: 10.1002/smll.202300328. Epub 2023 May 24. Small. 2023. PMID: 37226388 Free PMC article. Review.
-
CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning.CRISPR J. 2023 Aug;6(4):316-324. doi: 10.1089/crispr.2023.0019. Epub 2023 Jul 12. CRISPR J. 2023. PMID: 37439822 Free PMC article.
-
CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics.Methods. 2022 Sep;205:1-10. doi: 10.1016/j.ymeth.2022.06.002. Epub 2022 Jun 9. Methods. 2022. PMID: 35690249 Free PMC article.
-
CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications.Adv Sci (Weinh). 2023 Jul;10(20):e2301697. doi: 10.1002/advs.202301697. Epub 2023 May 10. Adv Sci (Weinh). 2023. PMID: 37162202 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous