Uniqueness of RNA Coliphage Qβ Display System in Directed Evolutionary Biotechnology
- PMID: 33801772
- PMCID: PMC8067240
- DOI: 10.3390/v13040568
Uniqueness of RNA Coliphage Qβ Display System in Directed Evolutionary Biotechnology
Abstract
Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide's functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.
Keywords: A1; A2; F+, minor coat; Leviviridae; M13; Qβ; UGA; affinity maturation; evolutionary biotechnology; fitness landscape; icosahedron; in vitro evolution; major coat; pIII; quasispecies; replicase; tryptophan.
Conflict of interest statement
The authors report no conflict of interest in the work of this review paper.
Figures
Similar articles
-
Function of the RNA Coliphage Qβ Proteins in Medical In Vitro Evolution.Methods Protoc. 2018 May 31;1(2):18. doi: 10.3390/mps1020018. Methods Protoc. 2018. PMID: 31164561 Free PMC article. Review.
-
In vitro evolution and affinity-maturation with Coliphage qβ display.PLoS One. 2014 Nov 13;9(11):e113069. doi: 10.1371/journal.pone.0113069. eCollection 2014. PLoS One. 2014. PMID: 25393763 Free PMC article.
-
Crystal structure of the bacteriophage Qβ coat protein in complex with the RNA operator of the replicase gene.J Mol Biol. 2014 Mar 6;426(5):1039-49. doi: 10.1016/j.jmb.2013.08.025. Epub 2013 Sep 11. J Mol Biol. 2014. PMID: 24035813
-
Protein-RNA Interactions in the Single-Stranded RNA Bacteriophages.Subcell Biochem. 2018;88:281-303. doi: 10.1007/978-981-10-8456-0_13. Subcell Biochem. 2018. PMID: 29900502 Review.
-
Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis.Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11697-11702. doi: 10.1073/pnas.1707102114. Epub 2017 Oct 16. Proc Natl Acad Sci U S A. 2017. PMID: 29078304 Free PMC article.
Cited by
-
Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions.Vaccines (Basel). 2023 Apr 29;11(5):919. doi: 10.3390/vaccines11050919. Vaccines (Basel). 2023. PMID: 37243023 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials