Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec;199(12):4832-4846.
doi: 10.1007/s12011-021-02584-7. Epub 2021 Jan 18.

Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae

Affiliations
Review

Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae

Munir Ozturk et al. Biol Trace Elem Res. 2021 Dec.

Abstract

Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.

Keywords: Cadmium; Molecular biology; Saccharomyces cerevisiae; Toxicity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Ozturk M, Gucel S (2015) Cadmium (Cd) and lead (Pb) induced inhibition in growth and alteration in some biochemical attributes and mineral accumulation in mung bean [Vigna radiata (L.) Wilczek]. Commun Soil Sci Plant Anal 47:405–413
    1. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782 - PMC - DOI
    1. Farooq M, Ullah A, Usman M, Siddique KH (2020) Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere 260:127652 - PubMed - DOI
    1. El-Esawi MA, Elkelish A, Soliman M, Elansary HO, Zaid A, Wani SH (2020) Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants 9(1):43 - PMC - DOI
    1. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16(3):1807–1828 - DOI

LinkOut - more resources