Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec 21;8(4):783.
doi: 10.3390/vaccines8040783.

Harnessing Cellular Immunity for Vaccination against Respiratory Viruses

Affiliations
Review

Harnessing Cellular Immunity for Vaccination against Respiratory Viruses

Nicholas W Lukacs et al. Vaccines (Basel). .

Abstract

Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.

Keywords: RNA; RSV; SARS-CoV-2; cellular immunity; nanoparticles; respiratory viruses; vaccine; virus-like particles.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Overview of Harnessing Cellular Immunity for Respiratory Virus Vaccine Development. Figure created using https://biorender.com/.

Similar articles

Cited by

References

    1. Troeger C., Forouzanfar M., Rao P.C., Khalil I., Brown A., Swartz S., Fullman N., Mosser J., Thompson R.L., Reiner R.C., et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017;17:1133–1161. doi: 10.1016/S1473-3099(17)30396-1. - DOI - PMC - PubMed
    1. Nair H., Simões E.A., Rudan I., Gessner B.D., Azziz-Baumgartner E., Zhang J.S.F., Feikin D.R., Mackenzie G.A., Moiïsi J.C., Roca A., et al. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: A systematic analysis. Lancet. 2013;381:1380–1390. doi: 10.1016/S0140-6736(12)61901-1. - DOI - PMC - PubMed
    1. Alexander-Miller M.A. Vaccines against Respiratory Viral Pathogens for Use in Neonates: Opportunities and Challenges. J. Immunol. 2014;193:5363–5369. doi: 10.4049/jimmunol.1401410. - DOI - PMC - PubMed
    1. Borchers A.T., Chang C., Gershwin M.E., Gershwin L.J. Respiratory Syncytial Virus—A Comprehensive Review. Clin. Rev. Allergy Immunol. 2013;45:331–379. doi: 10.1007/s12016-013-8368-9. - DOI - PMC - PubMed
    1. Ruckwardt T.J., Morabito K.M., Graham B.S. Determinants of early life immune responses to RSV infection. Curr. Opin. Virol. 2016;16:151–157. doi: 10.1016/j.coviro.2016.01.003. - DOI - PMC - PubMed