Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 11;16(1):483.
doi: 10.1186/s12917-020-02708-6.

Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus

Affiliations

Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus

Dahan Yang et al. BMC Vet Res. .

Abstract

Background: Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection.

Methods: A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress.

Results: In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage.

Conclusions: These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.

Keywords: Histopathological and ultrastructural changes; Immunosuppression; Oxidation antioxidant imbalance; Reticuloendotheliosis virus; Thymus.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The infected chicken exhibited typical depression. The thymus of Group I and Group C chickens at 21 days post-infection
Fig. 2
Fig. 2
Changes in the oxidative stress biomarkers in chickens infected with REV. a The total antioxidant capacity (TAC) of the thymus. b The superoxide dismutase (SOD) activity in the thymus. c The level of malondialdehyde (MDA) in the thymus. d The level of H2O2 in the thymus. e The level of catalase (CAT) in the thymus. f The level of glutathione peroxidase 1 (GPx1) in the thymus. Data are presented as the means ± SD (n = 5).*(P < 0.05) and **(P < 0.01) indicates a significant difference when compared to the control
Fig. 3
Fig. 3
Changes in CAT and GPx1 mRNA expression. a CAT mRNA expression in the thymus. b Level of GPx1 mRNA expression in the thymus. Data are expressed as the means ± SD (n = 5).*(P < 0.05) and **(P < 0.01) indicates a significant difference compared to the control group
Fig. 4
Fig. 4
Changes in the Thymus/BW index. Data are expressed as the means ± SD (n = 5).*(P < 0.05) and **(P < 0.01) indicate a significant difference compared to the control group
Fig. 5
Fig. 5
Histological and ultrastructural changes in the chicken thymus after REV infection. Histological examination of the thymus in the control group (a) and REV infection group (b) of chickens by HE staining (200x). Histological results showed significant necrosis (↑) and haemorrhage (↑) in the REV infection group. Transmission electron microscopy examination of the thymus in the control group (c) and REV infection group (d) of chickens (15 000x).Ultrastructural results showed that the REV infection group showed nuclear membrane rupture (↑), mitochondrial vacuolization (↑) and enlarged intercellular space (↑)

Similar articles

Cited by

References

    1. Gao C, Zhai J, Dang SY, Zheng SM. Analysis of alternative splicing in chicken embryo fibroblasts in response to reticuloendotheliosis virus infection. Avian Pathol. 2018;47(6):585–94. doi: 10.1080/03079457.2018.1511047. - DOI - PubMed
    1. Li JP, Dong X, Yang CH, Li QH, Cui ZZ, Chang S, Zhao P, Yu KZ, Yang HC. Isolation, identification, and whole genome sequencing of reticuloendotheliosis virus from a vaccine against Marek’s disease. Poult Sci. 2015;94(4):643–9. doi: 10.3382/ps/pev034. - DOI - PubMed
    1. Xue M, Zhao Y, Hu S, Shi X, Cui H, Wang Y. Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus. Arch Virol. 2017;162(5):1187–99. doi: 10.1007/s00705-016-3180-5. - DOI - PMC - PubMed
    1. Bohls RL, Linares JA, Gross SL, Ferro PJ, Silvy NJ, Collisson EW. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater’s prairie chicken. Virus Res. 2006;119(2):187–94. doi: 10.1016/j.virusres.2006.01.011. - DOI - PubMed
    1. Cheng Z, Shi Y, Zhang L, Zhu G, Diao X, Cui Z. Occurrence of reticuloendotheliosis in Chinese partridge. J Vet Med Sci. 2007;69(12):1295–8. doi: 10.1292/jvms.69.1295. - DOI - PubMed

MeSH terms

LinkOut - more resources