The molecular structure and function of sorting nexin 10 in skeletal disorders, cancers, and other pathological conditions
- PMID: 33241559
- DOI: 10.1002/jcp.30173
The molecular structure and function of sorting nexin 10 in skeletal disorders, cancers, and other pathological conditions
Abstract
SNX10 is a member of the phox homology domain-containing family of phosphoinositide-binding proteins. Intracellularly, SNX10 localizes to endosomes where it mediates intracellular trafficking, endosome organization, and protein localization to the centrosome and cilium. It is highly expressed in bone and the gut where it participates in bone mineral and calcium homeostasis through the regulation of osteoclastic bone resorption and gastric acid secretion, respectively. Not surprisingly, patients harboring mutations in SNX10 mutation manifest a phenotype of autosomal recessive osteopetrosis or malignant infantile osteopetrosis, which is clinically characterized by dense bones with increased cortical bone into the medullary space with bone marrow occlusion or depletion, bone marrow failure, and anemia. Accordingly, SNX10 mutant osteoclasts exhibit impaired bone resorptive capacity. Beyond the skeleton, there is emerging evidence implicating SNX10 in cancer development, metabolic disorders, inflammation, and chaperone-mediated autophagy. Understanding the structural basis through which SNX10 exerts its diverse biological functions in both cell and tissue-specific manners may therefore inform new therapeutic opportunities toward the treatment and management of SNX10-related diseases.
Keywords: cancers; skeletal disorders; sorting nexin 10.
© 2020 Wiley Periodicals LLC.
Similar articles
-
Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis.Proteins. 2014 Dec;82(12):3483-9. doi: 10.1002/prot.24689. Epub 2014 Oct 1. Proteins. 2014. PMID: 25212774
-
Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption.PLoS Genet. 2015 Mar 26;11(3):e1005057. doi: 10.1371/journal.pgen.1005057. eCollection 2015 Mar. PLoS Genet. 2015. PMID: 25811986 Free PMC article.
-
SNX10 regulates osteoclastogenic cell fusion and osteoclast size in mice.J Bone Miner Res. 2024 Sep 26;39(10):1503-1517. doi: 10.1093/jbmr/zjae125. J Bone Miner Res. 2024. PMID: 39095084
-
SNX10 gene mutation in infantile malignant osteopetrosis: A case report and literature review.Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021 Jan 28;46(1):108-112. doi: 10.11817/j.issn.1672-7347.2021.190322. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021. PMID: 33678645 Free PMC article. Review. Chinese, English.
-
Skeletal dysplasias with increased bone density: evolution of molecular pathogenesis in the last century.Gene. 2013 Oct 1;528(1):41-5. doi: 10.1016/j.gene.2013.04.069. Epub 2013 May 5. Gene. 2013. PMID: 23657117 Review.
Cited by
-
Genome sequencing identifies a large non-coding region deletion of SNX10 causing autosomal recessive osteopetrosis.J Hum Genet. 2023 Apr;68(4):287-290. doi: 10.1038/s10038-022-01104-2. Epub 2022 Dec 16. J Hum Genet. 2023. PMID: 36526684 Free PMC article.
-
Molecular Mechanisms of Craniofacial and Dental Abnormalities in Osteopetrosis.Int J Mol Sci. 2023 Jun 20;24(12):10412. doi: 10.3390/ijms241210412. Int J Mol Sci. 2023. PMID: 37373559 Free PMC article. Review.
References
REFERENCES
-
- Aker, M., Rouvinski, A., Hashavia, S., Ta-Shma, A., Shaag, A., Zenvirt, S., Israel, S., Weintraub, M., Taraboulos, A., Bar-Shavit, Z., & Elpeleg, O. (2012). An SNX10 mutation causes malignant osteopetrosis of infancy. Journal of Medical Genetics, 49(4), 221-226.
-
- Amirfiroozy, A., Hamidieh, A. A., Golchehre, Z., Rezamand, A., Yahyaei, M., Beiranvandi, F., Amirfiroozy, S., & Keramatipour, M. (2017). A novel mutation in SNX10 gene causes malignant infantile osteopetrosis. Avicenna Journal of Medical Biotechnology, 9(4), 205-208.
-
- Armstrong, D. A., Chen, Y., Dessaint, J. A., Aridgides, D. S., Channon, J. Y., Mellinger, D. L., Christensen, B. C., & Ashare, A. (2019). DNA methylation changes in regional lung macrophages are associated with metabolic differences. Immunohorizons, 3(7), 274-281.
-
- Battaglino, R. A., Jha, P., Sultana, F., Liu, W., & Morse, L. R. (2019). FKBP12: A partner of Snx10 required for vesicular trafficking in osteoclasts. Journal of Cellular Biochemistry, 120(8), 13321-13329.
-
- Cannon, M. E., Currin, K. W., Young, K. L., Perrin, H. J., Vadlamudi, S., Safi, A., Song, L., Wu, Y., Wabitsch, M., Laakso, M., Crawford, G. E., & Mohlke, K. L. (2019). Open chromatin profiling in adipose tissue marks genomic regions with functional roles in cardiometabolic traits. G3 (Bethesda), 9(8), 2521-2533.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources