Transparency and reproducibility in artificial intelligence
- PMID: 33057217
- PMCID: PMC8144864
- DOI: 10.1038/s41586-020-2766-y
Transparency and reproducibility in artificial intelligence
Abstract
Breakthroughs in artificial intelligence (AI) hold enormous potential as it can automate complex tasks and go even beyond human performance. In their study, McKinney et al. showed the high potential of AI for breast cancer screening. However, the lack of methods’ details and algorithm code undermines its scientific value. Here, we identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al., and provide solutions to these obstacles with implications for the broader field.
Comment in
-
Reply to: Transparency and reproducibility in artificial intelligence.Nature. 2020 Oct;586(7829):E17-E18. doi: 10.1038/s41586-020-2767-x. Nature. 2020. PMID: 33057218 No abstract available.
Comment on
-
International evaluation of an AI system for breast cancer screening.Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1. Nature. 2020. PMID: 31894144
Similar articles
-
Reply to: Transparency and reproducibility in artificial intelligence.Nature. 2020 Oct;586(7829):E17-E18. doi: 10.1038/s41586-020-2767-x. Nature. 2020. PMID: 33057218 No abstract available.
-
Artificial Intelligence and Mechanical Circulatory Support.Heart Fail Clin. 2022 Apr;18(2):301-309. doi: 10.1016/j.hfc.2021.11.005. Epub 2022 Mar 4. Heart Fail Clin. 2022. PMID: 35341542 Review.
-
The inclusion of augmented intelligence in medicine: A framework for successful implementation.Cell Rep Med. 2022 Jan 18;3(1):100485. doi: 10.1016/j.xcrm.2021.100485. eCollection 2022 Jan 18. Cell Rep Med. 2022. PMID: 35106506 Free PMC article. Review.
-
Framework and metrics for the clinical use and implementation of artificial intelligence algorithms into endoscopy practice: recommendations from the American Society for Gastrointestinal Endoscopy Artificial Intelligence Task Force.Gastrointest Endosc. 2023 May;97(5):815-824.e1. doi: 10.1016/j.gie.2022.10.016. Epub 2023 Feb 8. Gastrointest Endosc. 2023. PMID: 36764886
-
Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review.JAMA Dermatol. 2021 Nov 1;157(11):1362-1369. doi: 10.1001/jamadermatol.2021.3129. JAMA Dermatol. 2021. PMID: 34550305 Free PMC article. Review.
Cited by
-
Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices.Front Comput Neurosci. 2024 Sep 20;18:1360095. doi: 10.3389/fncom.2024.1360095. eCollection 2024. Front Comput Neurosci. 2024. PMID: 39371524 Free PMC article.
-
Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams.Antibiotics (Basel). 2024 Sep 6;13(9):853. doi: 10.3390/antibiotics13090853. Antibiotics (Basel). 2024. PMID: 39335027 Free PMC article. Review.
-
Expression of microRNA induced by postoperative delirium-like behavior is associated with long-term default mode network disruption: Sequencing and a secondary analysis of resting-state fMRI data.CNS Neurosci Ther. 2024 Sep;30(9):e70038. doi: 10.1111/cns.70038. CNS Neurosci Ther. 2024. PMID: 39317458 Free PMC article.
-
Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study.J Med Internet Res. 2024 Sep 17;26:e62890. doi: 10.2196/62890. J Med Internet Res. 2024. PMID: 39288404 Free PMC article.
-
ENCORE: a practical implementation to improve reproducibility and transparency of computational research.Nat Commun. 2024 Sep 16;15(1):8117. doi: 10.1038/s41467-024-52446-8. Nat Commun. 2024. PMID: 39284801 Free PMC article.
References
-
- McKinney SM, Sieniek M, Godbole V & Godwin J. International evaluation of an AI system for breast cancer screening. Nature (2020). - PubMed
-
- Nature Research Editorial Policies. Reporting standards and availability of data, materials, code and protocols. Springer Nature; https://www.nature.com/nature-research/editorial-policies/reporting-stan....
-
- Gundersen OE, Gil Y & Aha DW On reproducible AI: Towards reproducible research, open science, and digital scholarship in AI publications. AI Magazine 39, 56–68 (2018).
-
- Crane M. Questionable Answers in Question Answering Research: Reproducibility and Variability of Published Results. Transactions of the Association for Computational Linguistics 6, 241–252 (2018).