Application of deep learning in genomics
- PMID: 33051704
- DOI: 10.1007/s11427-020-1804-5
Application of deep learning in genomics
Abstract
In recent years, deep learning has been widely used in diverse fields of research, such as speech recognition, image classification, autonomous driving and natural language processing. Deep learning has showcased dramatically improved performance in complex classification and regression problems, where the intricate structure in the high-dimensional data is difficult to discover using conventional machine learning algorithms. In biology, applications of deep learning are gaining increasing popularity in predicting the structure and function of genomic elements, such as promoters, enhancers, or gene expression levels. In this review paper, we described the basic concepts in machine learning and artificial neural network, followed by elaboration on the workflow of using convolutional neural network in genomics. Then we provided a concise introduction of deep learning applications in genomics and synthetic biology at the levels of DNA, RNA and protein. Finally, we discussed the current challenges and future perspectives of deep learning in genomics.
Keywords: convolutional neural network; deep learning; genomics.
Similar articles
-
Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.Comput Intell Neurosci. 2021 Dec 10;2021:2691346. doi: 10.1155/2021/2691346. eCollection 2021. Comput Intell Neurosci. 2021. PMID: 34925485 Free PMC article.
-
Predicting enhancers with deep convolutional neural networks.BMC Bioinformatics. 2017 Dec 1;18(Suppl 13):478. doi: 10.1186/s12859-017-1878-3. BMC Bioinformatics. 2017. PMID: 29219068 Free PMC article.
-
Deep Learning and Its Applications in Biomedicine.Genomics Proteomics Bioinformatics. 2018 Feb;16(1):17-32. doi: 10.1016/j.gpb.2017.07.003. Epub 2018 Mar 6. Genomics Proteomics Bioinformatics. 2018. PMID: 29522900 Free PMC article. Review.
-
Deep Learning for Genomics: From Early Neural Nets to Modern Large Language Models.Int J Mol Sci. 2023 Nov 1;24(21):15858. doi: 10.3390/ijms242115858. Int J Mol Sci. 2023. PMID: 37958843 Free PMC article. Review.
-
Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.J Med Imaging Radiat Sci. 2019 Dec;50(4):477-487. doi: 10.1016/j.jmir.2019.09.005. Epub 2019 Oct 7. J Med Imaging Radiat Sci. 2019. PMID: 31601480 Review.
Cited by
-
Vegetable biology and breeding in the genomics era.Sci China Life Sci. 2023 Feb;66(2):226-250. doi: 10.1007/s11427-022-2248-6. Epub 2022 Dec 7. Sci China Life Sci. 2023. PMID: 36508122 Review.
-
Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy.Sci China Life Sci. 2023 May;66(5):1183-1195. doi: 10.1007/s11427-022-2224-4. Epub 2022 Dec 15. Sci China Life Sci. 2023. PMID: 36543995 Free PMC article.
-
iTCep: a deep learning framework for identification of T cell epitopes by harnessing fusion features.Front Genet. 2023 May 9;14:1141535. doi: 10.3389/fgene.2023.1141535. eCollection 2023. Front Genet. 2023. PMID: 37229205 Free PMC article.
-
SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency.Hereditas. 2023 Mar 13;160(1):11. doi: 10.1186/s41065-023-00272-1. Hereditas. 2023. PMID: 36907956 Free PMC article.
-
SonicParanoid2: fast, accurate, and comprehensive orthology inference with machine learning and language models.Genome Biol. 2024 Jul 25;25(1):195. doi: 10.1186/s13059-024-03298-4. Genome Biol. 2024. PMID: 39054525 Free PMC article.
References
-
- Alipanahi, B., Delong, A., Weirauch, M.T., and Frey, B.J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33, 831–838. - PubMed
-
- Anand, N., and Huang, P. (2018). Generative modeling for protein structures. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., eds. Advances in Neural Information Processing Systems 31. Cambridge: MIT Press. 7494–7505.
-
- Andolfatto, P. (2005). Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources