Chromosome drives via CRISPR-Cas9 in yeast
- PMID: 32859906
- PMCID: PMC7455567
- DOI: 10.1038/s41467-020-18222-0
Chromosome drives via CRISPR-Cas9 in yeast
Abstract
Self-propagating drive systems are capable of causing non-Mendelian inheritance. Here, we report a drive system in yeast referred to as a chromosome drive that eliminates the target chromosome via CRISPR-Cas9, enabling the transmission of the desired chromosome. Our results show that the entire Saccharomyces cerevisiae chromosome can be eliminated efficiently through only one double-strand break around the centromere via CRISPR-Cas9. As a proof-of-concept experiment of this CRISPR-Cas9 chromosome drive system, the synthetic yeast chromosome X is completely eliminated, and the counterpart wild-type chromosome X harboring a green fluorescent protein gene or the components of a synthetic violacein pathway are duplicated by sexual reproduction. We also demonstrate the use of chromosome drive to preferentially transmit complex genetic traits in yeast. Chromosome drive enables entire chromosome elimination and biased inheritance on a chromosomal scale, facilitating genomic engineering and chromosome-scale genetic mapping, and extending applications of self-propagating drives.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.mBio. 2018 Sep 25;9(5):e01410-18. doi: 10.1128/mBio.01410-18. mBio. 2018. PMID: 30254120 Free PMC article.
-
CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.World J Microbiol Biotechnol. 2019 Jul 6;35(7):111. doi: 10.1007/s11274-019-2688-8. World J Microbiol Biotechnol. 2019. PMID: 31280424 Review.
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.Metab Eng. 2015 Mar;28:213-222. doi: 10.1016/j.ymben.2015.01.008. Epub 2015 Jan 28. Metab Eng. 2015. PMID: 25638686
-
Easy efficient HDR-based targeted knock-in in Saccharomyces cerevisiae genome using CRISPR-Cas9 system.Bioengineered. 2022 Jun;13(6):14857-14871. doi: 10.1080/21655979.2022.2162667. Bioengineered. 2022. PMID: 36602175 Free PMC article.
-
Yeast chromosomal engineering to improve industrially-relevant phenotypes.Curr Opin Biotechnol. 2020 Dec;66:165-170. doi: 10.1016/j.copbio.2020.07.003. Epub 2020 Aug 18. Curr Opin Biotechnol. 2020. PMID: 32818746 Review.
Cited by
-
Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification.Int J Mol Sci. 2023 Jul 26;24(15):11960. doi: 10.3390/ijms241511960. Int J Mol Sci. 2023. PMID: 37569333 Free PMC article. Review.
-
Application and Technical Challenges in Design, Cloning, and Transfer of Large DNA.Bioengineering (Basel). 2023 Dec 15;10(12):1425. doi: 10.3390/bioengineering10121425. Bioengineering (Basel). 2023. PMID: 38136016 Free PMC article. Review.
-
Combining nucleotide variations and structure variations for improving astaxanthin biosynthesis.Microb Cell Fact. 2022 May 9;21(1):79. doi: 10.1186/s12934-022-01793-6. Microb Cell Fact. 2022. PMID: 35527251 Free PMC article.
-
YLC-assembly: large DNA assembly via yeast life cycle.Nucleic Acids Res. 2023 Aug 25;51(15):8283-8292. doi: 10.1093/nar/gkad599. Nucleic Acids Res. 2023. PMID: 37486765 Free PMC article.
-
Applications of CRISPR/Cas gene-editing technology in yeast and fungi.Arch Microbiol. 2021 Dec 26;204(1):79. doi: 10.1007/s00203-021-02723-7. Arch Microbiol. 2021. PMID: 34954815
References
-
- Austin, B. U. R. T., Trivers, R. & Burt, A. Genes in Conflict: The Biology of Selfish Genetic Elements (Harvard University Press, Harvard, 2009).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials