Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 6;7(3):29.
doi: 10.3390/jcdd7030029.

The Importance of Telomere Shortening for Atherosclerosis and Mortality

Affiliations
Review

The Importance of Telomere Shortening for Atherosclerosis and Mortality

Wolfgang Herrmann et al. J Cardiovasc Dev Dis. .

Abstract

Telomeres are the protective end caps of chromosomes and shorten with every cell division. Short telomeres are associated with older age and adverse lifestyle factors. Leucocyte telomere length (LTL) has been proposed as a biomarker of biological age. The shortening of LTL with age is the result of the end-replication problem, environmental, and lifestyle-related factors. Epidemiologic studies have shown that LTL predicts cardiovascular disease, all-cause mortality, and death from vascular causes. Age appears to be an important co-variate that explains a substantial fraction of this effect. Although it has been proposed that short telomeres promote atherosclerosis and impair the repair of vascular lesions, existing results are inconsistent. Oxidative stress and chronic inflammation can both accelerate telomere shortening. Multiple factors, including homocysteine (HCY), vitamin B6, and vitamin B12 modulate oxidative stress and inflammation through direct and indirect mechanisms. This review provides a compact overview of telomere physiology and the utility of LTL measurements in atherosclerosis and cardiovascular disease. In addition, it summarizes existing knowledge regarding the impact of oxidative stress, inflammation, HCY, and B-vitamins on telomere function.

Keywords: B vitamins; age; atherosclerosis; carsiovascular disease; inflammation; telomere.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interests.

Figures

Figure 1
Figure 1
Telomere shortening causes genomic instability, which (1) triggers cell-cycle arrest, senescence, and apoptosis of vascular smooth muscle cells, (2) reduces the regenerative capacity of blood vessel tissue, and (3) promotes the formation of a necrotic core in atherosclerotic plaques. Ultimately, this increases the risk of cardiovascular events. Telomere length could be preserved through lifestyle interventions, such as regular physical activity, low-stress levels, healthy diet, and sleeping patterns. * supported by correlation studies, + supported by functional studies in vivo or in vitro.

Similar articles

Cited by

References

    1. Vijg J., Suh Y. Genome instability and aging. Annu. Rev. Physiol. 2013;75:645–668. doi: 10.1146/annurev-physiol-030212-183715. - DOI - PubMed
    1. Lombard D.B., Chua K.F., Mostoslavsky R., Franco S., Gostissa M., Alt F.W. DNA repair, genome stability, and aging. Cell. 2005;120:497–512. doi: 10.1016/j.cell.2005.01.028. - DOI - PubMed
    1. Blasco M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007;3:640–649. doi: 10.1038/nchembio.2007.38. - DOI - PubMed
    1. Blasco M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005;6:611–622. doi: 10.1038/nrg1656. - DOI - PubMed
    1. Muller H. The remaking of chromosomes. Collect. Net. 1938;13:181–198.

LinkOut - more resources