Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 21;9(7):1746.
doi: 10.3390/cells9071746.

Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer's Disease: Cell Cycle Reentry and Beyond

Affiliations
Review

Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer's Disease: Cell Cycle Reentry and Beyond

Shang-Der Chen et al. Cells. .

Abstract

Inhibitor of DNA-binding/differentiation (Id) proteins, a family of helix-loop-helix (HLH) proteins that includes four members of Id1 to Id4 in mammalian cells, are critical for regulating cell growth, differentiation, senescence, cell cycle progression, and increasing angiogenesis and vasculogenesis, as well as accelerating the ability of cell migration. Alzheimer's disease (AD), the most common neurodegenerative disease in the adult population, manifests the signs of cognitive decline, behavioral changes, and functional impairment. The underlying mechanisms for AD are not well-clarified yet, but the aggregation of amyloid-beta peptides (Aβs), the major components in the senile plaques observed in AD brains, contributes significantly to the disease progression. Emerging evidence reveals that aberrant cell cycle reentry may play a central role in Aβ-induced neuronal demise. Recently, we have shown that several signaling mediators, including Id1, hypoxia-inducible factor-1 (HIF-1), cyclin-dependent kinases-5 (CDK5), and sonic hedgehog (Shh), may contribute to Aβ-induced cell cycle reentry in postmitotic neurons; furthermore, Id1 and CDK5/p25 mutually antagonize the expression/activity of each other. Therefore, Id proteins may potentially have clinical applications in AD. In this review article, we introduce the underlying mechanisms for cell cycle dysregulation in AD and present some examples, including our own studies, to show different aspects of Id1 in terms of cell cycle reentry and other signaling that may be crucial to alter the neuronal fates in this devastating neurodegenerative disease. A thorough understanding of the underlying mechanisms may provide a rationale to make an earlier intervention before the occurrence of cell cycle reentry and subsequent apoptosis in the fully differentiated neurons during the progression of AD or other neurodegenerative diseases.

Keywords: Alzheimer’s disease; cell cycle reentry; inhibitor of DNA-binding/differentiation proteins; neurodegenerative diseases.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A simplified diagram illustrating the cell cycle progression and its regulators of various phases. The cell cycle is divided into the interphase and mitotic (M) phase; the former is further subdivided into three phases, namely G1, S, and G2. The differentiated cells are without DNA replication and cellular division, remaining in the G0 stage. Upregulated cyclin D binds to and thereby activates Cdk4 and Cdk6 to phosphorylate the retinoblastoma (Rb) protein, allowing cells to escape from the quiescent state and start the G1 phase. The cyclin E-activated Cdk2 phosphorylates an additional Rb protein that promotes the progression of G1 into the S phase. The replication of DNA in the S phase is driven by cyclin A and Cdk2. The cyclin A/Cdk1 complex is found in both the late S and G2 phases, which is suggested to promote chromosome condensation. The formation of the cyclin B and Cdk1 complex regulates the G2/M transition.
Figure 2
Figure 2
The schematic diagram describes the possible mechanisms of amyloid-beta peptide (Aβ)- and the inhibitor of DNA-binding/differentiation (Id)-1-induced neuronal cell cycle reentry and cell death. The hyperactivity of presenilin (PSEN)-1/2 (PS1/2) and γ-secretase produces abundant Aβs that increase the Id1 expression, which enhances the activation of hypoxia-inducible factor-1α (HIF-1α) and leads ultimately to the expression of the sonic hedgehog (Shh) protein; these mediators together contribute to cell cycle reentry with the expression of cell cycle markers such as cyclin D1 and phosphorylated retinoblastoma protein (pRb) in the postmitotic neurons, which is followed by caspase-3-dependent apoptosis.

Similar articles

Cited by

References

    1. Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. - DOI - PMC - PubMed
    1. O’Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011;34:185–204. doi: 10.1146/annurev-neuro-061010-113613. - DOI - PMC - PubMed
    1. Palop J.J., Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci. 2010;13:812–818. doi: 10.1038/nn.2583. - DOI - PMC - PubMed
    1. Soucek T., Cumming R., Dargusch R., Maher P., Schubert D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron. 2003;39:43–56. doi: 10.1016/S0896-6273(03)00367-2. - DOI - PubMed
    1. Kawamoto E.M., Lepsch L.B., Boaventura M.F., Munhoz C.D., Lima L.S., Yshii L.M., Avellar M.C., Curi R. Amyloid beta-peptide activates nuclear factor-kappaB through an N-methyl-D-aspartate signaling pathway in cultured cerebellar cells. J. Neurosci. Res. 2008;86:845–860. doi: 10.1002/jnr.21548. - DOI - PubMed

Publication types

Substances