Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan;2(1):9-31.
doi: 10.1038/s42255-019-0161-5. Epub 2020 Jan 20.

NAD+ homeostasis in health and disease

Affiliations
Review

NAD+ homeostasis in health and disease

Elena Katsyuba et al. Nat Metab. 2020 Jan.

Abstract

The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Harden, A. & Young, W. The alcoholic ferment of yeast‐juice. Proc. R. Soc. Lond. B 77, 405–420 (1906). - DOI
    1. von Euler, H. & Myrbäck, K. Co‐zymase. XVII. Hoppe-Seyler’s Z. Physiol. Chem. 190, 93–100 (1930). - DOI
    1. Warburg, O. & Christian, W. Pyridine, the hydrogen transfusing component of fermentative enzymes. Helv. Chim. Acta 19, 79–88 (1936). - DOI
    1. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). - DOI
    1. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010). - DOI - PubMed - PMC

Publication types

LinkOut - more resources