Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 19:11:1091.
doi: 10.3389/fimmu.2020.01091. eCollection 2020.

MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy

Affiliations

MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy

Guido Moll et al. Front Immunol. .

Abstract

Numerous clinical trials of mesenchymal stromal/stem cells (MSCs) as a new treatment for coronavirus-induced disease (COVID-19) have been registered recently, most of them based on intravenous (IV) infusion. There is no approved effective therapy for COVID-19, but MSC therapies have shown first promise in the treatment of acute respiratory distress syndrome (ARDS) pneumonia, inflammation, and sepsis, which are among the leading causes of mortality in COVID-19 patients. Many of the critically ill COVID-19 patients are in a hypercoagulable procoagulant state and at high risk for disseminated intravascular coagulation, thromboembolism, and thrombotic multi-organ failure, another cause of high fatality. It is not yet clear whether IV infusion is a safe and effective route of MSC delivery in COVID-19, since MSC-based products express variable levels of highly procoagulant tissue factor (TF/CD142), compromising the cells' hemocompatibility and safety profile. Of concern, IV infusions of poorly characterized MSC products with unchecked (high) TF/CD142 expression could trigger blood clotting in COVID-19 and other vulnerable patient populations and further promote the risk for thromboembolism. In contrast, well-characterized products with robust manufacturing procedures and optimized modes of clinical delivery hold great promise for ameliorating COVID-19 by exerting their beneficial immunomodulatory effects, inducing tissue repair and organ protection. While the need for MSC therapy in COVID-19 is apparent, integrating both innate and adaptive immune compatibility testing into the current guidelines for cell, tissue, and organ transplantation is critical for safe and effective therapies. It is paramount to only use well-characterized, safe MSCs even in the most urgent and experimental treatments. We here propose three steps to mitigate the risk for these vulnerable patients: (1) updated clinical guidelines for cell and tissue transplantation, (2) updated minimal criteria for characterization of cellular therapeutics, and (3) updated cell therapy routines reflecting specific patient needs.

Keywords: coagulation/clotting/thrombosis; coronavirus-induced disease 2019 (COVID19); hemocompatibility testing; intensive care unit (ICU); intravascular and intravenous infusion; mesenchymal stromal cells (MSC); severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2); tissue factor (TF/CD142).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Promise of MSC therapies for COVID-19. (A) Rapid global spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, reaching >3 million confirmed infected cases and >220,000 deaths (7% of total) by coronavirus-induced disease 2019 (COVID-19) by April 29, 2020, according to John Hopkins University of Medicine (https://coronavirus.jhu.edu/map.html). Newly registered clinical studies for COVID-19 frequently show MSCs, particularly umbilical cord (UC)-derived MSC products, to be among the anticipated treatments for critically ill patients (the list of 597 studies with status as of April 14, 2020, was compiled by Cell-Trials-Data (30); TCM, traditional Chinese medicines; EC, extracellular vesicle). (B) Separating promise from peril in MSC therapy of COVID-19. Critically ill COVID-19 patients suffering from acute respiratory distress (ARDS) pneumonia, inflammation/sepsis, and a systemic procoagulant state are at elevated risk for disseminated intravascular coagulation (DIC), venous thromboembolism and thrombotic multi-organ-failure. While high-quality MSC products applied via intramuscular (IM) injection hold promise to cure COVID-19 by exerting beneficial immunomodulatory effects, tissue repair and organ protection, the worst-case scenario of intravascular (IV) infusion of high doses of poorly characterized MSC products with unchecked/high tissue factor TF/CD142 expression can potentially promote adverse events and lead to potentially lethal embolism and thrombotic multi-organ failure.
Figure 2
Figure 2
Integrating innate immune profiling of cell therapies into clinical practice. (A) MSC products have greatly diversified (e.g., the tissue source that they are derived from, with bone marrow (BM), perinatal tissue (PT), and adipose tissue (AT) being the most frequent sources), and product qualification has shown large differences in expression of the highly procoagulant tissue factor TF/CD142 between products (BM lowest, PT intermediate, and AT highest), which impacts on the cell hemocompatibility and preferred mode of clinical product delivery to patients [e.g., intravenous (IV) infusion vs. intramuscular or subdermal (IM/SD) injection or intratracheal (IT) direct pulmonary delivery with bronchoalveolar lavage (BAL)]. (B) Historical timeline of integrating innate immune profiling of cellular therapies into clinical practice to mitigate the risk for potentially lethal thromboembolism due to triggering of the instant blood-mediated inflammatory reaction (IBMIR) upon intravascular/intravenous (IV) infusion; C3/C5, complement factors 3 and 5; C3a/C5a, complement activation fragmentss 3a and 5a.

Similar articles

Cited by

References

    1. Nacoti M, Ciocca A, Giupponi A, Brambillasca P, Lussana F, Pisano M, et al. At the epicenter of the Covid-19 pandemic and humanitarian crises in Italy: changing perspectives on preparation and mitigation. Catalyst Non Issue Content. (2020) 1 10.1186/s12939-020-01162-y - DOI
    1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. (2020) 323:1545–6. 10.1001/jama.2020.4031 - DOI - PubMed
    1. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. . Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. (2020). 10.1056/NEJMsb2005114 - DOI - PubMed
    1. Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy's benefits and risks. N Engl J Med. (2017) 376:1007–9. 10.1056/NEJMp1613723 - DOI - PubMed
    1. Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. (2018). 22:824–33. 10.1016/j.stem.2018.05.004 - DOI - PMC - PubMed

MeSH terms