Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 17;15(7):1731-1746.
doi: 10.1021/acschembio.0c00304. Epub 2020 Jun 26.

Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces

Affiliations
Review

Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces

Ashley K Nguyen et al. ACS Chem Biol. .

Abstract

To discern how mechanical forces coordinate biological outcomes, methods that map cell-generated forces in a spatiotemporal manner, and at cellular length scales, are critical. In their native environment, whether it be within compact multicellular three-dimensional structures or sparsely populated fibrillar networks of the extracellular matrix, cells are constantly exposed to a slew of physical forces acting on them from all directions. At the same time, cells exert highly localized forces of their own on their surroundings and on neighboring cells. Together, the generation and transmission of these forces can control diverse cellular activities and behavior as well as influence cell fate decisions. To thoroughly understand these processes, we must first be able to characterize and measure such forces. However, our experimental needs and technical capabilities are in discord-while it is apparent that we should study cell-generated forces within more biologically relevant 3D environments, this goal remains challenging because of caveats associated with complex "sensing-transduction-readout" modalities. In this Review, we will discuss the latest techniques for measuring cell-generated forces. We will highlight recent advances in traction force microscopy and examine new alternative approaches for quantifying cell-generated forces, both of individual cells and within 3D tissues. Finally, we will explore the future direction of novel cellular force-sensing tools in the context of mechanobiology and next-generation biomaterials design.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources