Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 24;25(8):2000.
doi: 10.3390/molecules25082000.

Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening

Affiliations
Review

Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening

Chia-Yu Chang et al. Molecules. .

Abstract

Neurodegenerative diseases represent a significant unmet medical need in our aging society. There are no effective treatments for most of these diseases, and we know comparatively little regarding pathogenic mechanisms. Among the challenges faced by those involved in developing therapeutic drugs for neurodegenerative diseases, the syndromes are often complex, and small animal models do not fully recapitulate the unique features of the human nervous system. Human induced pluripotent stem cells (iPSCs) are a novel technology that ideally would permit us to generate neuronal cells from individual patients, thereby eliminating the problem of species-specificity inherent when using animal models. Specific phenotypes of iPSC-derived cells may permit researchers to identify sub-types and to distinguish among unique clusters and groups. Recently, iPSCs were used for drug screening and testing for neurologic disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), spinocerebellar atrophy (SCA), and Zika virus infection. However, there remain many challenges still ahead, including how one might effectively recapitulate sporadic disease phenotypes and the selection of ideal phenotypes and for large-scale drug screening. Fortunately, quite a few novel strategies have been developed that might be combined with an iPSC-based model to solve these challenges, including organoid technology, single-cell RNA sequencing, genome editing, and deep learning artificial intelligence. Here, we will review current applications and potential future directions for iPSC-based neurodegenerative disease models for critical drug screening.

Keywords: drug screening; iPSC; neurodegenerative diseases.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Apply induced pluripotent stem cells (iPSC)-derived neurons/glia for neurological disease phenotype confirmation, mechanism study, and drug test.
Figure 2
Figure 2
Combine novel technologies and iPSCs for disease model improvement, genetic studies, make complex neuronal organoids, and large-scale drug screening. scRNA: single cell RNA, SNP: single nucleotide polymorphism, BBB: blood–brain barrier, NMJ: neuromuscular junction.

Similar articles

Cited by

References

    1. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. - DOI - PubMed
    1. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. - DOI - PubMed
    1. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. - DOI - PubMed
    1. Chen G., Gulbranson D.R., Hou Z., Bolin J.M., Ruotti V., Probasco M.D., Smuga-Otto K., Howden S.E., Diol N.R., Propson N.E., et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:424–429. doi: 10.1038/nmeth.1593. - DOI - PMC - PubMed
    1. Nakagawa M., Taniguchi Y., Senda S., Takizawa N., Ichisaka T., Asano K., Morizane A., Doi D., Takahashi J., Nishizawa M., et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 2014;4:3594. doi: 10.1038/srep03594. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources