Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a
- PMID: 32303654
- PMCID: PMC7211967
- DOI: 10.1073/pnas.2002110117
Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a
Abstract
A massive intronic hexanucleotide repeat (GGGGCC) expansion in C9ORF72 is a genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, C9ORF72, together with SMCR8 and WDR41, has been shown to regulate autophagy and function as Rab GEF. However, the precise function of C9ORF72 remains unclear. Here, we report the cryogenic electron microscopy (cryo-EM) structure of the human C9ORF72-SMCR8-WDR41 complex at a resolution of 3.2 Å. The structure reveals the dimeric assembly of a heterotrimer of C9ORF72-SMCR8-WDR41. Notably, the C-terminal tail of C9ORF72 and the DENN domain of SMCR8 play critical roles in the dimerization of the two protomers of the C9ORF72-SMCR8-WDR41 complex. In the protomer, C9ORF72 and WDR41 are joined by SMCR8 without direct interaction. WDR41 binds to the DENN domain of SMCR8 by the C-terminal helix. Interestingly, the prominent structural feature of C9ORF72-SMCR8 resembles that of the FLNC-FNIP2 complex, the GTPase activating protein (GAP) of RagC/D. Structural comparison and sequence alignment revealed that Arg147 of SMCR8 is conserved and corresponds to the arginine finger of FLCN, and biochemical analysis indicated that the Arg147 of SMCR8 is critical to the stimulatory effect of the C9ORF72-SMCR8 complex on Rab8a and Rab11a. Our study not only illustrates the basis of C9ORF72-SMCR8-WDR41 complex assembly but also reveals the GAP activity of the C9ORF72-SMCR8 complex.
Keywords: C9ORF72; GAP activity; SMCR8; WDR41; cryo-EM.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
The C9orf72-SMCR8-WDR41 complex is a GAP for small GTPases.Autophagy. 2020 Aug;16(8):1542-1543. doi: 10.1080/15548627.2020.1779473. Epub 2020 Jun 17. Autophagy. 2020. PMID: 32521185 Free PMC article.
-
Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD.Nature. 2020 Sep;585(7824):251-255. doi: 10.1038/s41586-020-2633-x. Epub 2020 Aug 26. Nature. 2020. PMID: 32848248 Free PMC article.
-
Structural basis for the ARF GAP activity and specificity of the C9orf72 complex.Nat Commun. 2021 Jun 18;12(1):3786. doi: 10.1038/s41467-021-24081-0. Nat Commun. 2021. PMID: 34145292 Free PMC article.
-
The progress in C9orf72 research: ALS/FTD pathogenesis, functions and structure.Small GTPases. 2022 Jan;13(1):56-76. doi: 10.1080/21541248.2021.1892443. Epub 2021 Mar 5. Small GTPases. 2022. PMID: 33663328 Free PMC article. Review.
-
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26. Autophagy. 2021. PMID: 33632058 Free PMC article. Review.
Cited by
-
A Python program to merge Sanger sequences: an update.PeerJ. 2024 Oct 22;12:e18363. doi: 10.7717/peerj.18363. eCollection 2024. PeerJ. 2024. PMID: 39465179 Free PMC article.
-
Neuronal Transcriptome from C9orf72 Repeat Expanded Human Tissue is Associated with Loss of C9orf72 Function.Free Neuropathol. 2020;1:23. Epub 2020 Aug 21. Free Neuropathol. 2020. PMID: 32905541 Free PMC article.
-
The C9orf72-SMCR8-WDR41 complex is a GAP for small GTPases.Autophagy. 2020 Aug;16(8):1542-1543. doi: 10.1080/15548627.2020.1779473. Epub 2020 Jun 17. Autophagy. 2020. PMID: 32521185 Free PMC article.
-
Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview.Methods Mol Biol. 2021;2293:1-18. doi: 10.1007/978-1-0716-1346-7_1. Methods Mol Biol. 2021. PMID: 34453706
-
C9ORF72: What It Is, What It Does, and Why It Matters.Front Cell Neurosci. 2021 May 5;15:661447. doi: 10.3389/fncel.2021.661447. eCollection 2021. Front Cell Neurosci. 2021. PMID: 34025358 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous