Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 10;15(4):e0231399.
doi: 10.1371/journal.pone.0231399. eCollection 2020.

Mechanistic molecular responses of the giant clam Tridacna crocea to Vibrio coralliilyticus challenge

Affiliations

Mechanistic molecular responses of the giant clam Tridacna crocea to Vibrio coralliilyticus challenge

Duo Xu et al. PLoS One. .

Abstract

Vibrio coralliilyticus is a pathogen of coral and mollusk, contributing to dramatic losses worldwide. In our study, we found that V. coralliilyticus challenge could directly affect adult Tridacna crocea survival; there were dead individuals appearing at 6 h post infection, and there were 45.56% and 56.78% mortality rates in challenged groups after 36 h of infection. The apoptosis rate of hemocytes was significantly increased by 1.8-fold at 6 h after V. coralliilyticus injection. To shed light on the mechanistic molecular responses of T. crocea to V. coralliilyticus infection, we used transcriptome sequencing analysis and other relevant techniques to analyze T. crocea hemocytes at 0 h, 6 h, 12 h and 24 h after V. coralliilyticus challenge. Our results revealed that the total numbers of unigenes and DEGs were 195651 and 3446, respectively. Additional details were found by KEGG pathway enrichment analysis, where DEGs were significantly enriched in immune-related signaling pathways, such as the TLR signaling pathway, and some were associated with signaling related to apoptosis. Quantitative validation results illustrated that with exposure to V. coralliilyticus, the expression of TLR pathway members, TLR, MyD88, IRAK4, TRAF6, and IкB-α, were significantly upregulated (by 22.9-, 9.6-, 4.0-, 3.6-, and 3.9-fold, respectively) at 6 h. The cytokine-related gene IL-17 exhibited an increase of 6.3-fold and 10.5-fold at 3 h and 6 h, respectively. The apoptosis-related gene IAP1 was dramatically increased by 2.99-fold at 6 h. These results indicate that adult T. crocea could initiate the TLR pathway to resist V. coralliilyticus, which promotes the release of inflammatory factors such as IL-17 and leads to the activation of a series of outcomes, such as apoptosis. The response mechanism is related to the T. crocea immunoreaction stimulated by V. coralliilyticus, providing a theoretical basis for understanding T. crocea immune response mechanisms.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. V. coralliilyticus directly affected adult T. crocea survival and significantly promoted apoptosis in T. crocea hemocytes.
(A) Healthy and infected adult T. crocea. (B) Survival rate of adult T. crocea as a function of the duration of the experiment and the varying concentrations of V. coralliilyticus. (C) To detect apoptosis of hemocytes after T. crocea was stimulated by V. coralliilyticus, flow cytometry was used with Annexin V-FITC and PI; n = 3. On the scatter plot of the bivariate flow cytometry, the left lower region represents the living cells, the lower right region represents the early apoptotic cells and the top right region represents the late apoptotic cells. (D) The apoptosis fold change following V. coralliilyticus challenge was compared to the control. Significant differences are indicated by an asterisk.
Fig 2
Fig 2. Differentially expressed genes in the V. coralliilyticus-infected samples compared to sample V0.
(A) Venn diagram visualizes overlapping transcripts between V0 vs. V6, V0 vs. V12 and V0 vs. V24 transcriptomes. The different circles represent comparisons of different samples. The numbers in the fields describe the number of transcripts that the three analyzed groups of DEGs have in common at a given intersection. (B) Numbers of DEGs in V0 vs. V6, V0 vs. V12, V0 vs. V24 and total.
Fig 3
Fig 3. Differentially expressed genes analysis.
(A) KEGG pathway enrichment analysis of DEGs in T. crocea hemocytes exposed to V. coralliilyticus. The enrichment factor is the ratio of the DEG number and the number of all genes in a certain enrichment pathway. The dot size denotes the number of DEGs, while colors correspond to the adjusted p-value range. (B) A heat map shows immune-related differentially expressed T. crocea transcripts. The heat map shows expression profiles of healthy T. crocea at 0 h, 6 h, 12 h and 24 h after V. coralliilyticus challenge. Color intensity is proportional to the magnitude of changes. Relative expression levels are shown in red (upregulation) and blue (downregulation).
Fig 4
Fig 4. Sequence analysis of TcMyD88.
(A) Functional domain organization of TcMyD88. (B) Multiple sequence alignment analysis of TcMyD88 and other known members of the MyD88 family. The black shaded sequences indicate residues that exactly match the consensus. The gray shaded sequences showed a similar relationship. The GenBank accession numbers corresponding to the MyD88 sequences examined are listed: Ruditapes philippinarum (AEF32114.1), Hyriopsis cumingii (AHB62785.1), Crassostrea gigas (NP_001292286.1), Mizuhopecten yessoensis (XP_021355224.1), Mus musculus (NP_034981.1), Homo sapiens (NP_001166037.2), Danio rerio (NP_997979.2), and Bos taurus (NP_001014404.1). (C) A phylogenetic tree showing the relationships among TcMyD88 and MyD88 from different species was constructed by the neighbor-joining method using MEGA5.0 software. The node values represent the percent bootstrap confidence derived from 1000 replicates. The GenBank accession numbers corresponding to the MyD88 sequences and MAL sequence examined: Argopecten irradians (AVP74319.1), Crassostrea virginica (XP_022332088.1), Cyclina sinensis (AIZ97751.1), Sepiella japonica (AQY56781.1), Maylandia zebra (XP_004546813.1), Homo sapiens MAL (NP_002362.1), and other sequences referenced in Fig 4B.
Fig 5
Fig 5. Expression pattern of TcMyD88.
(A) The expression patterns of TcMyD88 in different tissues were examined by qRT-PCR. The relative expression levels were normalized to β-actin. Significant differences are indicated by different letters. (B) Relative expression levels of TcMyD88 in different embryonic stages. β-actin was employed as an internal control. Error bars indicate standard error.
Fig 6
Fig 6. Subcellular localization of TcMyD88.
The left part of the panel shows the pEGFP-N1 and TcMyD88 fluorescence fusion proteins, the middle of the panel shows the cell nuclei indicated by blue DAPI staining, and the right part of the panel shows the combined images.
Fig 7
Fig 7. Changes in the relative luciferase activity of NF-кB were analyzed based on levels of TcMyD88 overexpression.
Significant differences are indicated by different letters.
Fig 8
Fig 8. Time-course expression analysis of TLR pathway-related genes in hemocytes from V. coralliilyticus-challenged T. crocea.
Expression profiles of TLR (A), MyD88 (B), IRAK4 (C), TRAF6 (D), IкB-α (E), IL-17 (F) and IAP1 (G) in hemocytes from V. coralliilyticus-challenged T. crocea. All of the samples were analyzed in triplicate. The β-actin gene was used as a reference gene to normalize expression levels between the samples. Statistical significance was determined by Student’s t-tests and is indicated by an asterisk (*p < 0.05, **p < 0.01 and ***p < 0.001).

Similar articles

Cited by

References

    1. Hill RW, Armstrong EJ, Inaba K, Morita M, Tresguerres M, Stillman JH, et al. Acid secretion by the boring organ of the burrowing giant clam, Tridacna crocea. Biol Lett. 2018;14(6). 10.1098/rsbl.2018.0047 . - DOI - PMC - PubMed
    1. Norton JH, Shepherd MA, Long HM, Fitt WK. The Zooxanthellal Tubular System in the Giant Clam. Biol Bull. 1992;183(3):503–6. 10.2307/1542028 . - DOI - PubMed
    1. Baillie BK, Yellowlees D. Characterization and function of carbonic anhydrases in the zooxanthellae-giant clam symbiosis. Proc Biol Sci. 1998;265(1395):465–73. 10.1098/rspb.1998.0318 . - DOI - PMC - PubMed
    1. Neo ML, Todd PA. Population density and genetic structure of the giant clams Tridacna crocea and T. squamosa on Singapore’s reefs. Aquatic Biology. 2012;14(3):265–75. 10.3354/ab00400 - DOI
    1. bin Othman AS, Goh GHS, Todd PA. The Distribution and Status of Giant Clams (Family Tridacnidae)—a Short Review. Raffles B Zool. 2010;58(1):103–11.

Publication types

Supplementary concepts

Grants and funding

Support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA13020403/XDA13020202, the National Key R&D Program of China (2018YFC1406505), the National Natural Science Foundation of China (No. 31572661), Science and Technology Planning Project of Guangzhou, China (201707010177), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0407), Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (No. ISEE2018PY01) the National Science Foundation of China (31702340), Science and Technology Planning Project of Guangzhou, China (2017B030314052). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.