Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model
- PMID: 32275068
- DOI: 10.1111/dgd.12665
Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model
Abstract
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.
Keywords: chordate evolution; convergent extension; extracellular matrix; notochord; vacuolation.
© 2020 Japanese Society of Developmental Biologists.
Similar articles
-
Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates.Dev Biol. 2019 Apr 15;448(2):260-270. doi: 10.1016/j.ydbio.2018.09.003. Epub 2018 Sep 11. Dev Biol. 2019. PMID: 30217598
-
Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis.Evodevo. 2016 Aug 31;7(1):21. doi: 10.1186/s13227-016-0056-4. eCollection 2016. Evodevo. 2016. PMID: 27583126 Free PMC article.
-
Shaping the zebrafish notochord.Development. 2003 Mar;130(5):873-87. doi: 10.1242/dev.00314. Development. 2003. PMID: 12538515
-
How was the notochord born?Evol Dev. 2012 Jan-Feb;14(1):56-75. doi: 10.1111/j.1525-142X.2011.00522.x. Evol Dev. 2012. PMID: 23016975 Review.
-
On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates.Genesis. 2014 Dec;52(12):925-34. doi: 10.1002/dvg.22831. Epub 2014 Nov 4. Genesis. 2014. PMID: 25303744 Free PMC article. Review.
Cited by
-
Biology of Tenascin C and its Role in Physiology and Pathology.Curr Med Chem. 2024;31(19):2706-2731. doi: 10.2174/0929867330666230404124229. Curr Med Chem. 2024. PMID: 37021423 Review.
-
Morphogenetic Roles of Hydrostatic Pressure in Animal Development.Annu Rev Cell Dev Biol. 2022 Oct 6;38:375-394. doi: 10.1146/annurev-cellbio-120320-033250. Epub 2022 Jul 8. Annu Rev Cell Dev Biol. 2022. PMID: 35804476 Free PMC article. Review.
-
Tissue-specific expression of carbohydrate sulfotransferases drives keratan sulfate biosynthesis in the notochord and otic vesicles of Xenopus embryos.Front Cell Dev Biol. 2023 Mar 14;11:957805. doi: 10.3389/fcell.2023.957805. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 36998246 Free PMC article.
-
Serial blockface SEM suggests that stem cells may participate in adult notochord growth in an invertebrate chordate, the Bahamas lancelet.Evodevo. 2020 Oct 17;11:22. doi: 10.1186/s13227-020-00167-6. eCollection 2020. Evodevo. 2020. PMID: 33088474 Free PMC article.
-
Proteostasis governs differential temperature sensitivity across embryonic cell types.Cell. 2023 Nov 9;186(23):5015-5027.e12. doi: 10.1016/j.cell.2023.10.013. Cell. 2023. PMID: 37949057 Free PMC article.
References
REFERENCES
-
- Adams, D. S., Keller, R., & Koehl, M. A. (1990). The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development, 110(1), 115-130.
-
- Annona, G., Holland, N. D., & D'Aniello, S. (2015). Evolution of the notochord. EvoDevo, 6, 30. https://doi.org/10.1186/s13227-015-0025-3
-
- Astone, M., Lai, J. K. H., Dupont, S., Stainier, D. Y. R., Argenton, F., & Vettori, A. (2018). Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Scientific Reports, 8(1), 10189. https://doi.org/10.1038/s41598-018-27657-x
-
- Aszodi, A., Chan, D., Hunziker, E., Bateman, J. F., & Fassler, R. (1998). Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. Journal of Cell Biology, 143(5), 1399-1412. https://doi.org/10.1083/jcb.143.5.1399
-
- Baas, D., Malbouyres, M., Haftek-Terreau, Z., Le Guellec, D., & Ruggiero, F. (2009). Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biology, 28(8), 490-502. https://doi.org/10.1016/j.matbio.2009.07.004
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources