Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity
- PMID: 32142172
- DOI: 10.1002/bies.201900188
Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Keywords: ATAC-seq; accessibility; chromatin; embryonic development; enhancer; quantitative analysis; transcriptional regulation.
© 2020 The Authors. BioEssays published by Wiley Periodicals, Inc.
Similar articles
-
Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation.Dev Cell. 2023 Oct 9;58(19):1898-1916.e9. doi: 10.1016/j.devcel.2023.07.007. Epub 2023 Aug 8. Dev Cell. 2023. PMID: 37557175 Free PMC article.
-
ATAC-seq reveals regional differences in enhancer accessibility during the establishment of spatial coordinates in the Drosophila blastoderm.Genome Res. 2019 May;29(5):771-783. doi: 10.1101/gr.242362.118. Epub 2019 Apr 8. Genome Res. 2019. PMID: 30962180 Free PMC article.
-
Lineage-Resolved Enhancer and Promoter Usage during a Time Course of Embryogenesis.Dev Cell. 2020 Dec 7;55(5):648-664.e9. doi: 10.1016/j.devcel.2020.10.009. Epub 2020 Nov 9. Dev Cell. 2020. PMID: 33171098
-
Eukaryotic enhancers: common features, regulation, and participation in diseases.Cell Mol Life Sci. 2015 Jun;72(12):2361-75. doi: 10.1007/s00018-015-1871-9. Epub 2015 Feb 26. Cell Mol Life Sci. 2015. PMID: 25715743 Free PMC article. Review.
-
The chromatin signatures of enhancers and their dynamic regulation.Nucleus. 2023 Dec;14(1):2160551. doi: 10.1080/19491034.2022.2160551. Nucleus. 2023. PMID: 36602897 Free PMC article. Review.
Cited by
-
Identification and prediction of developmental enhancers in sea urchin embryos.BMC Genomics. 2021 Oct 19;22(1):751. doi: 10.1186/s12864-021-07936-0. BMC Genomics. 2021. PMID: 34666684 Free PMC article.
-
Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation.Dev Cell. 2023 Oct 9;58(19):1898-1916.e9. doi: 10.1016/j.devcel.2023.07.007. Epub 2023 Aug 8. Dev Cell. 2023. PMID: 37557175 Free PMC article.
-
How enhancers regulate wavelike gene expression patterns.Elife. 2023 Jul 11;12:e84969. doi: 10.7554/eLife.84969. Elife. 2023. PMID: 37432987 Free PMC article.
-
Entangled and non-modular enhancer sequences producing independent spatial activities.Sci Adv. 2024 Nov 22;10(47):eadr9856. doi: 10.1126/sciadv.adr9856. Epub 2024 Nov 20. Sci Adv. 2024. PMID: 39565856 Free PMC article.
-
Increased chromatin accessibility promotes the evolution of a transcriptional silencer in Drosophila.Sci Adv. 2023 Feb 17;9(7):eade6529. doi: 10.1126/sciadv.ade6529. Epub 2023 Feb 17. Sci Adv. 2023. PMID: 36800429 Free PMC article.
References
-
- J. Stalder, A. Larsen, J. D. Engel, M. Dolan, M. Groudine, H. Weintraub, Cell 1980, 20, 451.
-
- C. Wu, Nature 1980, 286, 854.
-
- M. J. Guertin, J. T. Lis, Curr. Opin. Genet. Dev. 2013, 23, 116.
-
- R. E. Thurman, E. Rynes, R. Humbert, J. Vierstra, M. T. Maurano, E. Haugen, N. C. Sheffield, A. B. Stergachis, H. Wang, B. Vernot, K. Garg, S. John, R. Sandstrom, D. Bates, L. Boatman, T. K. Canfield, M. Diegel, D. Dunn, A. K. Ebersol, T. Frum, E. Giste, A. K. Johnson, E. M. Johnson, T. Kutyavin, B. Lajoie, B. K. Lee, K. Lee, D. London, D. Lotakis, S. Neph, et al., Nature 2012, 489, 75.
-
- A. P. Boyle, S. Davis, H. P. Shulha, P. Meltzer, E. H. Margulies, Z. Weng, T. S. Furey, G. E. Crawford, Cell 2008, 132, 311.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases