Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr:105:154189.
doi: 10.1016/j.metabol.2020.154189. Epub 2020 Feb 24.

A novel Sprouty4-ERK1/2-Wnt/β-catenin regulatory loop in marrow stromal progenitor cells controls osteogenic and adipogenic differentiation

Affiliations
Free article

A novel Sprouty4-ERK1/2-Wnt/β-catenin regulatory loop in marrow stromal progenitor cells controls osteogenic and adipogenic differentiation

Lijie Tian et al. Metabolism. 2020 Apr.
Free article

Abstract

Background: Sprouty (SPRY) proteins play critical roles in controlling cell proliferation, differentiation, and survival by inhibiting receptor tyrosine kinase (RTK)-mediated extracellular signal-regulated kinase (ERK) signaling. Recent studies have demonstrated that SPRY4 negatively regulates angiogenesis and tumor growth. However, whether SPRY4 regulates osteogenic and/or adipogenic differentiation of mesenchymal stem cells remains to be explored.

Results: In this study, we investigated the expression pattern of Spry4 and found that its expression was regulated during the differentiation of mouse marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. In vitro loss-of-function and gain-of-function studies demonstrated that SPRY4 inhibited osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. In vivo experiments showed that silencing of Spry4 in the marrow of C57BL/6 mice blocked fat accumulation and promoted osteoblast differentiation in ovariectomized mice. Mechanistic investigations revealed the inhibitory effect of SPRY4 on canonical wingless-type MMTV integration site (Wnt) signaling and ERK pathway. ERK1/2 was shown to interact with low-density lipoprotein receptor-related protein 6 (LRP6) and activate the canonical Wnt signaling pathway. Inactivation of Wnt signaling attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by Spry4 small interfering RNA (siRNA). Finally, promoter study revealed that β-catenin transcriptionally inhibited the expression of Spry4.

Conclusions: Our study for the first time suggests that a novel SPRY4-ERK1/2-Wnt/β-catenin regulatory loop exists in marrow stromal progenitor cells and plays a key role in cell fate determination. It also highlights the potential of SPRY4 as a novel therapeutic target for the treatment of metabolic bone disorders such as osteoporosis.

Keywords: Adipocyte; Differentiation; Extracellular signal-regulated kinase; Osteoblast; Sprouty; β-Catenin.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors declare no conflict of interest.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources