Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul;15(7):1191-1198.
doi: 10.4103/1673-5374.272566.

The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction

Affiliations
Review

The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction

Peter J G Cussell et al. Neural Regen Res. 2020 Jul.

Abstract

N-formyl peptide receptors (FPRs) were first identified upon phagocytic leukocytes, but more than four decades of research has unearthed a plethora of non-myeloid roles for this receptor family. FPRs are expressed within neuronal tissues and markedly in the central nervous system, where FPR interactions with endogenous ligands have been implicated in the pathophysiology of several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as neurological cancers such as neuroblastoma. Whilst the homeostatic function of FPRs in the nervous system is currently undefined, a variety of novel physiological roles for this receptor family in the neuronal context have been posited in both human and animal settings. Rapid developments in recent years have implicated FPRs in the process of neurogenesis and neuronal differentiation which, upon greater characterisation, could represent a novel pharmacological target for neuronal regeneration therapies that may be used in the treatment of brain/spinal cord injury, stroke and neurodegeneration. This review aims to summarize the recent progress made to determine the physiological role of FPRs in a neuronal setting, and to put forward a case for FPRs as a novel pharmacological target for conditions of the nervous system, and for their potential to open the door to novel neuronal regeneration therapies.

Keywords: Alzheimer’s disease; formyl peptide receptor; neural regeneration; neuroblastoma; neurodegeneration; neuroinflammation; neuronal differentiation; stroke.

PubMed Disclaimer

Conflict of interest statement

The authors declare the following competing financial interest(s): NGNM is named as the inventor on a UK patent held by the University of Roehampton for the use of kissorphin peptides to treat Alzheimer’s disease, Creutzfeldt-Jakob disease or diabetes mellitus (Publication Numbers: GB2493313 B); under the University of Roehampton rules he could benefit financially if the patent is commercially exploited. NGNM is also a shareholder and director of NeuroDelta Ltd (Company No. 06222473; http://www.neuro-delta.com)

Figures

Figure 1
Figure 1
Summary of published formyl peptide receptor implications in neurological disorders.
Figure 2
Figure 2
Summary of findings by Cussell et al. (2019) demonstrating morphological effects of FPRa14 upon neuroblastoma cell lines and the ability of FPR1-specific antagonists Boc-MLF and Cyclosporin H to attenuate N-formyl peptide receptor (FPR) differentiation.

Similar articles

Cited by

References

    1. Baracco EE, Pietrocola F, Buque A, Bloy N, Senovilla L, Zitvogel L, Vacchelli E, Kroemer G. Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncoimmunology. 2016;5:e1139275. - PMC - PubMed
    1. Becker EL, Forouhar FA, Grunnet ML, Boulay F, Tardif M, Bormann BJ, Sodja D, Ye RD, Woska JR, Jr, Murphy PM. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res. 1998;292:129–135. - PubMed
    1. Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, Molinari M, Ferretti E, Viscomi MT, Chiurchiu V. Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage via ALX/FPR2 receptor-regulated microRNAs. Mol Neurobiol. 2018;55:6894–6905. - PubMed
    1. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol. 2008;64:644–653. - PubMed
    1. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202:17–20. - PubMed