Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec 28;10(1):48.
doi: 10.3390/biom10010048.

Engineering Extracellular Vesicles as Nanotherapeutics for Regenerative Medicine

Affiliations
Review

Engineering Extracellular Vesicles as Nanotherapeutics for Regenerative Medicine

Lalithasri Ramasubramanian et al. Biomolecules. .

Abstract

Long thought of to be vesicles that primarily recycled waste biomolecules from cells, extracellular vesicles (EVs) have now emerged as a new class of nanotherapeutics for regenerative medicine. Recent studies have proven their potential as mediators of cell proliferation, immunomodulation, extracellular matrix organization and angiogenesis, and are currently being used as treatments for a variety of diseases and injuries. They are now being used in combination with a variety of more traditional biomaterials and tissue engineering strategies to stimulate tissue repair and wound healing. However, the clinical translation of EVs has been greatly slowed due to difficulties in EV isolation and purification, as well as their limited yields and functional heterogeneity. Thus, a field of EV engineering has emerged in order to augment the natural properties of EVs and to recapitulate their function in semi-synthetic and synthetic EVs. Here, we have reviewed current technologies and techniques in this growing field of EV engineering while highlighting possible future applications for regenerative medicine.

Keywords: biomaterials; extracellular vesicles; regenerative medicine; stem cells.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Biogenesis of extracellular vesicles. Microvesicles and apoptotic bodies originate directly from the plasma membrane, while exosomes are derived from the endosomal compartments. intraluminal vesicles (ILVs) accumulate in the multivesicular bodies (MVBs) after early endosome maturation. Proteins, lipids, nucleic acids and other cargo are sequestered within the ILVs through an endosomal sorting complex required for transport (ESCRT)-dependent pathway. Eventually, MVBs fuse with the plasma membrane and release the ILVs into the extracellular space as exosomes.
Figure 2
Figure 2
Cell-derived nanovesicles. Whole cells are mechanically extruded to break the cell and create plasma membrane fragments. The fragments then self-assemble into nanovesicles that can retain intracellular molecules and surface makers.
Figure 3
Figure 3
Extracellular vesicle (EV)-mimicking liposomes can be engineered to mimic EV features by recreating the lipidomic profile (e.g., phospholipids, sphingolipids, cholesterol), and by conjugating proteins and receptors to recreate the targeting specificity. The liposomes can also be loaded with a variety of molecules, including proteins, siRNAs, miRNAs and small molecules, to recapitulate common EV cargo.
Figure 4
Figure 4
Biomimetic Polymer Nanoparticles. Cell plasma membrane that has been isolated and purified can be mixed with a polymer-based nanoparticle to create a cell-membrane-cloaked particle. Different types of cargo can be loaded within the polymer core.

Similar articles

Cited by

References

    1. Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 2015;112:14452–14459. doi: 10.1073/pnas.1508520112. - DOI - PMC - PubMed
    1. Sampogna G., Guraya S.Y., Forgione A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 2015;3:101–107. doi: 10.1016/j.jmau.2015.05.002. - DOI - PMC - PubMed
    1. Gurtner G.C., Callaghan M.J., Longaker M.T. Progress and potential for regenerative medicine. Annu. Rev. Med. 2007;58:299–312. doi: 10.1146/annurev.med.58.082405.095329. - DOI - PubMed
    1. De Jong O.G., Van Balkom B.W.M., Schiffelers R.M., Bouten C.V.C., Verhaar M.C. Extracellular Vesicles: Potential Roles in Regenerative Medicine. Front. Immunol. 2014;5 doi: 10.3389/fimmu.2014.00608. - DOI - PMC - PubMed
    1. Fatima F., Nawaz M. Stem cell-derived exosomes: Roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin. J. Cancer. 2015;34 doi: 10.1186/s40880-015-0051-5. - DOI - PMC - PubMed

Publication types