Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec 25;35(12):2269-2283.
doi: 10.13345/j.cjb.190271.

[Cell-free synthetic biology: an emerging strategy torevolutionize the biomedical industry]

[Article in Chinese]
Affiliations
Free article
Review

[Cell-free synthetic biology: an emerging strategy torevolutionize the biomedical industry]

[Article in Chinese]
Yingying Liu et al. Sheng Wu Gong Cheng Xue Bao. .
Free article

Abstract

Cell-free synthetic biology system can perform biological transcription and translation process in vitro. Because of its advanced features, such as flexible openness, easy control, short expression time and high tolerance to cytotoxicity, this systemhas been successfully used to synthesize proteins that are difficult to express in cells. With the continuous development of cell-free biosensing technology and the lyophilization technology, its applications have widely expanded into many biomedical fields. This review discusses the current research progress of cell-free synthetic biology system in on-demand biopharmaceutical synthesis, portable diagnostics, and others. Further development of the system can lead to even more complicated synthesis of therapeutic proteins with post-translational modifications and evolution of different cell-free biosensors with high sensitivity. Cell-free synthetic biology as an emerging engineering strategy can be a better means applied to high-throughput screening of pharmaceutical proteins, detection of new pathogens, and other important health-care fields in the future.

无细胞合成生物系统,能够在体外完成生命转录翻译过程,因体系灵活开放、便于控制、表达周期短、高耐受性等特点,可表达细胞系统难以表达的蛋白质。随着无细胞生物传感和体系冻干技术的不断发展,其在医药健康领域的应用不断拓展。本文综述了无细胞合成生物学在按需生物医药合成和便携式医疗检测等医药健康领域的研究进展,该体系的进一步发展有潜力实现更复杂后修饰蛋白质药物的合成、可丰富无细胞生物传感器类型并提高其灵敏性。无细胞合成生物学作为新兴工程策略,未来必将更好地应用于高通量医药蛋白质筛选、新型病原体的检测等医药健康领域。.

Keywords: cell-free biosensors; cell-free synthetic biology; pharmaceutical protein; portable detection.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources