Evaluating the consistency of large-scale pharmacogenomic studies
- PMID: 31846027
- PMCID: PMC6917220
- DOI: 10.1093/bib/bby046
Evaluating the consistency of large-scale pharmacogenomic studies
Abstract
Recent years have seen an increase in the availability of pharmacogenomic databases such as Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) that provide genomic and functional characterization information for multiple cell lines. Studies have alluded to the fact that specific characterizations may be inconsistent between different databases. Analysis of the potential discrepancies in the different databases is highly significant, as these sources are frequently used to analyze and validate methodologies for personalized cancer therapies. In this article, we review the recent developments in investigating the correspondence between different pharmacogenomics databases and discuss the potential factors that require attention when incorporating these sources in any modeling analysis. Furthermore, we explored the consistency among these databases using copulas that can capture nonlinear dependencies between two sets of data.
Keywords: copulas; database dependencies; pairwise relationships; pharmacogenomic databases.
© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Figures
Similar articles
-
Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.Oncotarget. 2016 Aug 9;7(32):51619-51625. doi: 10.18632/oncotarget.10010. Oncotarget. 2016. PMID: 27322211 Free PMC article.
-
Pharmacogenomic agreement between two cancer cell line data sets.Nature. 2015 Dec 3;528(7580):84-7. doi: 10.1038/nature15736. Epub 2015 Nov 16. Nature. 2015. PMID: 26570998 Free PMC article.
-
Application of transfer learning for cancer drug sensitivity prediction.BMC Bioinformatics. 2018 Dec 28;19(Suppl 17):497. doi: 10.1186/s12859-018-2465-y. BMC Bioinformatics. 2018. PMID: 30591023 Free PMC article.
-
Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine.J Genet Genomics. 2021 Jul 20;48(7):540-551. doi: 10.1016/j.jgg.2021.03.007. Epub 2021 Apr 14. J Genet Genomics. 2021. PMID: 34023295 Review.
-
Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials.Curr Mol Med. 2005 Feb;5(1):83-102. doi: 10.2174/1566524053152933. Curr Mol Med. 2005. PMID: 15720272 Review.
Cited by
-
NeRD: a multichannel neural network to predict cellular response of drugs by integrating multidimensional data.BMC Med. 2022 Oct 17;20(1):368. doi: 10.1186/s12916-022-02549-0. BMC Med. 2022. PMID: 36244991 Free PMC article.
-
Machine learning-based identification of a consensus immune-derived gene signature to improve head and neck squamous cell carcinoma therapy and outcome.Front Pharmacol. 2024 Apr 10;15:1341346. doi: 10.3389/fphar.2024.1341346. eCollection 2024. Front Pharmacol. 2024. PMID: 38666027 Free PMC article.
-
Reassessing pharmacogenomic cell sensitivity with multilevel statistical models.Biostatistics. 2023 Oct 18;24(4):901-921. doi: 10.1093/biostatistics/kxac010. Biostatistics. 2023. PMID: 35277956 Free PMC article.
-
A cross-study analysis of drug response prediction in cancer cell lines.Brief Bioinform. 2022 Jan 17;23(1):bbab356. doi: 10.1093/bib/bbab356. Brief Bioinform. 2022. PMID: 34524425 Free PMC article.
-
Development of machine learning classifiers to predict compound activity on prostate cancer cell lines.J Cheminform. 2022 Nov 8;14(1):77. doi: 10.1186/s13321-022-00647-y. J Cheminform. 2022. PMID: 36348374 Free PMC article.
References
-
- Altman RB, Flockhart D, Goldstein DB.. Principles of Pharmacogenetics and Pharmacogenomics. Cambridge: Cambridge University Press, 2012.
-
- Adams MD, Kelley JM, Gocayne JD, et al.Complementary DNA sequencing: expressed sequence tags and human genome project. Science 1991;252(5013):1651–6. - PubMed
-
- Sinsheimer RL. The Santa Cruz workshop-may 1985. Genomics 1989;5(4):954–6. - PubMed
-
- Hamburg MA, Collins FS.. The path to personalized medicine. N Engl J Med 2010;363(4):301–4. - PubMed
-
- Kannel WB, McGee DL.. Diabetes and cardiovascular disease: the framingham study. JAMA 1979;241(19):2035–8. - PubMed