Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec 10;20(24):6223.
doi: 10.3390/ijms20246223.

Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy

Affiliations
Review

Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy

Sophia Stock et al. Int J Mol Sci. .

Abstract

Chimeric antigen receptor (CAR) T cell therapy can achieve outstanding response rates in heavily pretreated patients with hematological malignancies. However, relapses occur and they limit the efficacy of this promising treatment approach. The cellular composition and immunophenotype of the administered CART cells play a crucial role for therapeutic success. Less differentiated CART cells are associated with improved expansion, long-term in vivo persistence, and prolonged anti-tumor control. Furthermore, the ratio between CD4+ and CD8+ T cells has an effect on the anti-tumor activity of CART cells. The composition of the final cell product is not only influenced by the CART cell construct, but also by the culturing conditions during ex vivo T cell expansion. This includes different T cell activation strategies, cytokine supplementation, and specific pathway inhibition for the differentiation blockade. The optimal production process is not yet defined. In this review, we will discuss the use of different CART cell production strategies and the molecular background for the generation of improved CART cells in detail.

Keywords: CAR; CART; CART cell production; T cell activation; T lymphocyte; adoptive cell therapy; chimeric antigen receptor; cytokines; immunotherapy.

PubMed Disclaimer

Conflict of interest statement

Michael Schmitt received travel grants, funding for collaborative research and educational grants from Apogenix AG, Cellgene Ltd., Kite/Gilead AG, Minerva GmbH and Novartis AG. He is cofounder of TolerogenixX GmbH. Leopold Sellner is currently full-time employee of Takeda Pharma Vertrieb GmbH & Co. KG. Sophia Stock declares no conflict of interest.

Figures

Figure 1
Figure 1
Principles of current CART cell therapy. CART cell production includes initial T cell isolation and enrichment, followed by T cell activation, T cell expansion, gene transfer of a CAR vector and CART cell expansion. The final product is subjected to end-of-process formulation and cryopreservation. Patients usually receive a lymphodepletion before CART cell administration.
Figure 2
Figure 2
Chimeric antigen receptor (CAR) design. CARs consist of a single chain variable fragment (scFv) of an antibody, a non-signaling extracellular spacer and hinge domain, a transmembrane (TM) domain, an intracellular CD3ζ signaling domain from the T cell receptor and a costimulatory domain.
Figure 3
Figure 3
Chimeric antigen receptor generations. The 1st generation CART cells induced T cell activation only by the primary signal via the CD3ζ signaling domain. CART cells were further developed by integration of a costimulatory domain in 2nd generation CART cells. The 3rd generation CART cells consist of two costimulatory domains. The future 4th generation CART cells combine the vector with enzymes, cytokines, and costimulatory ligands.
Figure 4
Figure 4
Inhibition of signaling pathways for interrupting of the T cell differentiation process. The differentiation of naïve-like T (TN) cells and stem cell memory-like T (TSCM) cells into T central memory-like (TCM) cells, T effector memory-like (TEM) cells, and highly differentiated T effector-like (TEff) cells can be interrupted by molecules inhibiting key metabolic and developmental pathways.

Similar articles

Cited by

References

    1. Rosenberg S.A., Yang J.C., Sherry R.M., Kammula U.S., Hughes M.S., Phan G.Q., Citrin D.E., Restifo N.P., Robbins P.F., Wunderlich J.R., et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 2011;17:4550–4557. doi: 10.1158/1078-0432.CCR-11-0116. - DOI - PMC - PubMed
    1. Kunert A., Straetemans T., Govers C., Lamers C., Mathijssen R., Sleijfer S., Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front. Immunol. 2013;4:363. doi: 10.3389/fimmu.2013.00363. - DOI - PMC - PubMed
    1. Schubert M.L., Huckelhoven A., Hoffmann J.M., Schmitt A., Wuchter P., Sellner L., Hofmann S., Ho A.D., Dreger P., Schmitt M. Chimeric Antigen Receptor T Cell Therapy Targeting CD19-Positive Leukemia and Lymphoma in the Context of Stem Cell Transplantation. Hum. Gene Ther. 2016;27:758–771. doi: 10.1089/hum.2016.097. - DOI - PubMed
    1. Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H., Bader P., Verneris M.R., Stefanski H.E., Myers G.D., et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018;378:439–448. doi: 10.1056/NEJMoa1709866. - DOI - PMC - PubMed
    1. Schuster S.J., Bishop M.R., Tam C.S., Waller E.K., Borchmann P., McGuirk J.P., Jager U., Jaglowski S., Andreadis C., Westin J.R., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019;380:45–56. doi: 10.1056/NEJMoa1804980. - DOI - PubMed

MeSH terms

Substances