Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 6:16:85.
doi: 10.1186/s12986-019-0412-1. eCollection 2019.

Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus

Affiliations

Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus

Bodo C Melnik. Nutr Metab (Lond). .

Abstract

Type 2 diabetes mellitus (T2DM) steadily increases in prevalence since the 1950's, the period of widespread distribution of refrigerated pasteurized cow's milk. Whereas breastfeeding protects against the development of T2DM in later life, accumulating epidemiological evidence underlines the role of cow's milk consumption in T2DM. Recent studies in rodent models demonstrate that during the breastfeeding period pancreatic β-cells are metabolically immature and preferentially proliferate by activation of mechanistic target of rapamycin complex 1 (mTORC1) and suppression of AMP-activated protein kinase (AMPK). Weaning determines a metabolic switch of β-cells from a proliferating, immature phenotype with low insulin secretion to a differentiated mature phenotype with glucose-stimulated insulin secretion, less proliferation, reduced mTORC1- but increased AMPK activity. Translational evidence presented in this perspective implies for the first time that termination of milk miRNA transfer is the driver of this metabolic switch. miRNA-148a is a key inhibitor of AMPK and phosphatase and tensin homolog, crucial suppressors of mTORC1. β-Cells of diabetic patients return to the postnatal phenotype with high mTORC1 and low AMPK activity, explained by continuous transfer of bovine milk miRNAs to the human milk consumer. Bovine milk miRNA-148a apparently promotes β-cell de-differentiation to the immature mTORC1-high/AMPK-low phenotype with functional impairments in insulin secretion, increased mTORC1-driven endoplasmic reticulum stress, reduced autophagy and early β-cell apoptosis. In contrast to pasteurized cow's milk, milk's miRNAs are inactivated by bacterial fermentation, boiling and ultra-heat treatment and are missing in current infant formula. Persistent milk miRNA signaling adds a new perspective to the pathogenesis of T2DM and explains the protective role of breastfeeding but the diabetogenic effect of continued milk miRNA signaling by persistent consumption of pasteurized cow's milk.

Keywords: AMP-activated protein kinase; Beta-cell de-differentiation; Beta-cell metabolic switch; Diabetes mellitus type 2; Estrogen-related receptor gamma; Exosome; Mechanistic target of rapamycin complex 1; Pasteurized milk; Weaning; miRNA-148a.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe author declares that he has no competing interests.

Figures

Fig. 1
Fig. 1
a Milk exosome-mediated miRNA signaling of pancreatic β-cells during physiologic breastfeeding and persistence of bovine milk-derived miRNA signaling by continued consumption of pasteurized cow’s milk. miRNA-148a suppresses AMPK and PTEN. miRNA-29b inhibits the catabolism of branched-chain amino acids (BCAAs). Reduced AMPK- and PTEN activity combined with increased BCAA levels activate mTORC1, which promotes β-cell proliferation and mass expansion. miRNA-148a together with miRNA-130a suppress the transcription factor complex EER γ /PGC1 α, which controls multiple mitochondrial genes involved in ATP production required for glucose-stimulated insulin secretion (GSIS). miRNA-29b suppresses ONECUT2, an inhibitor of granuphilin resulting in enhanced suppression of GSIS. miRNA-29b suppresses DNMT3A increasing the expression of “forbidden” genes of mature β-cells such as HK1 and LDHA. b Weaning terminates milk miRNA signaling. The disappearance of miRNA-148a enhances the activity of AMPK and PTEN resulting in increased suppression of mTORC1, whereas AMPK-dependent gene-regulation is upregulated. EER γ /PGC1 α activates mitochondrial genes involved in ATP production which in combination with ONECUT2-mediated granuphilin suppression enhance GSIS. However, this mature β-cell phenotype de-differentiates again by persistent intake of bovine milk exosomes
Fig. 2
Fig. 2
a Physiological termination of breastmilk miRNA signaling after weaning. There is an appropriate metabolic switch from mTORC1-driven β-cell proliferation and mass expansion to AMPK-driven mature β-cell function with GSIS. b Infant formula feeding with deficient milk miRNA signaling may impair adequate β-cell mass expansion and differentiation to regularly matured β-cells. Metabolic challenges of an impaired pool of β-cells in later life may enhance the risk of type 2 diabetes. c Persistence of milk miRNA signaling after regular breastfeeding by intake of bioactive exosomes of bovine milk may de-differentiate β-cell back to a mTORC1 ↑ /AMPK ↓ progenitor phenotype enhancing the risk of type 2 diabetes mellitus. d The worst scenario: miRNA-deficient formula-fed infants start into life with a postnatally compromised pool of β-cells, have no appropriate miRNA-dependent metabolic switch to mature β-cells and may thus experience early de-differentiation of their β-cells to the mTORC1 ↑ /AMPK ↓ progenitor phenotype, that increases mTORC1-driven endoplasmic reticulum (ER) stress with reduced autophagy and early β-cell apoptosis

Similar articles

Cited by

References

    1. https://www.statista.com/statistics/448642/per-capita-consumption-of-mil.... Accessed 28 Sept 2019.
    1. https://milchindustrie.de/wpcontent/uploads/2018/11/ProkopfDeutschland_M.... Accessed 28 Sept 2019.
    1. Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr. 2005;59:393–398. doi: 10.1038/sj.ejcn.1602086. - DOI - PubMed
    1. Lawlor DA, Ebrahim S, Timpson N, Davey SG. Avoiding milk is associated with a reduced risk of insulin resistance and the metabolic syndrome: findings from the British Women’s Heart and Health Study. Diabet Med. 2005;22:808–811. doi: 10.1111/j.1464-5491.2005.01537.x. - DOI - PubMed
    1. Bergholdt HK, Nordestgaard BG, Ellervik C. Milk intake is not associated with low risk of diabetes or overweight-obesity: a Mendelian randomization study in 97,811 Danish individuals. Am J Clin Nutr. 2015;102:487–496. doi: 10.3945/ajcn.114.105049. - DOI - PubMed