Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan;29(1):112-118.
doi: 10.1097/MNH.0000000000000561.

Renoprotective effects of sodium-glucose cotransporter-2 inhibitors and underlying mechanisms

Affiliations
Review

Renoprotective effects of sodium-glucose cotransporter-2 inhibitors and underlying mechanisms

Naoki Kashihara et al. Curr Opin Nephrol Hypertens. 2020 Jan.

Abstract

Purpose of review: Emerging data have demonstrated that sodium-glucose cotransporter-2 (SGLT2) inhibitors prevent cardiovascular events, especially heart failure-associated endpoints. Cardiovascular outcome trials have also suggested their renoprotective effects. One large clinical trial investigated renal primary endpoints and demonstrated that SGLT2 inhibitors slowed the progression of diabetic kidney disease (DKD). This review summarizes clinical trial data on renal outcomes and discusses potential underlying mechanisms.

Recent findings: The EMPA-REG, CANVAS, and DECLARE-TIMI 58 studies revealed that SGLT2 inhibitors reduce the risk of cardiovascular events and concomitantly suggested that these drugs slow the progression of kidney disease in type 2 diabetes. The CREDENCE trial on patients with high-risk type 2 diabetes and chronic kidney disease demonstrated that canagliflozin treatment reduced the relative risk of a composite outcome, including end-stage kidney disease, serum creatinine doubling, and renal/cardiovascular death, by 30% in these patients. Animal experiments revealed that oxidative stress, inflammation, fibrosis, and tubuloglomerular feedback are underlying renoprotective mechanisms behind SGLT2 inhibitors.

Summary: Recent clinical trials have established the renoprotective effects of SGLT2 inhibitors. Further investigations on mechanisms of these renoprotective effects will provide deeper insights and understanding of pathogenetic properties of DKD.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91:733–794.
    1. Sharma A, Cooper LB, Fiuzat M, et al. Antihyperglycemic therapies to treat patients with heart failure and diabetes mellitus. JACC Heart Fail 2018; 6:813–822.
    1. Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134:752–772.
    1. Alicic RZ, Neumiller JJ, Johnson EJ, et al. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 2019; 68:248–257.
    1. Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018; 61:2087–2097.

Publication types

MeSH terms

Substances