Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro
- PMID: 31687506
- PMCID: PMC6820287
- DOI: 10.1016/j.heliyon.2019.e02663
Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro
Erratum in
-
Corrigendum to "Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro" [Heliyon 5, (10), (October 2019), e02663].Heliyon. 2019 Nov 21;5(11):e02805. doi: 10.1016/j.heliyon.2019.e02805. eCollection 2019 Nov. Heliyon. 2019. PMID: 31844731 Free PMC article.
Abstract
Establishing the intervention to enhance proliferation and differentiation potential is crucial for the clinical translation of stem cell-based therapy. In this study, the effects of simvastatin on these regards were explored. Canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) were treated with 4 doses of simvastatin, 0.1, 1, 10, and 100 nM. Simvastatin in low-dose range, 0.1 and 1 nM, enhanced dose-dependent cell proliferation at day 5 and 7. Exploration of the mechanisms revealed that simvastatin in low-dose range dose-dependently upregulated sets of cell cycle regulators, Cyclin D1 and Cyclin D2; proliferation marker, Ki-67; and anti-apoptotic gene; Bcl-2. Interestingly, pluripotent markers, Rex1 and Oct4, were dramatically increased upon the low-dose treatment. Contrastingly, treatment with high-dose simvastatin suppressed the expression of those genes. Thus, the results suggested beneficial effects of simvastatin on cBM-MSCs proliferation and expansion. Further study regarding differentiation potential and underlying mechanisms will accelerate the clinical application of the molecule on veterinary stem cell-based therapy.
Keywords: Canine bone marrow-derived mesenchymal stem cells (cBM-MSCs); Cell biology; Cell culture; Cell death; Cytotoxicity; Proliferation; Regenerative medicine; Simvastatin; Stem cell research; Stemness genes.
© 2019 The Author(s).
Figures
Similar articles
-
Corrigendum to "Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro" [Heliyon 5, (10), (October 2019), e02663].Heliyon. 2019 Nov 21;5(11):e02805. doi: 10.1016/j.heliyon.2019.e02805. eCollection 2019 Nov. Heliyon. 2019. PMID: 31844731 Free PMC article.
-
The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6.Vet J. 2021 Mar;269:105605. doi: 10.1016/j.tvjl.2020.105605. Epub 2020 Dec 29. Vet J. 2021. PMID: 33593496
-
Eugenol enhances proliferation and migration of mouse bone marrow-derived mesenchymal stem cells in vitro.Environ Toxicol Pharmacol. 2018 Jan;57:166-174. doi: 10.1016/j.etap.2017.12.012. Epub 2017 Dec 17. Environ Toxicol Pharmacol. 2018. PMID: 29277003
-
Alpha-5 Integrin Mediates Simvastatin-Induced Osteogenesis of Bone Marrow Mesenchymal Stem Cells.Int J Mol Sci. 2019 Jan 24;20(3):506. doi: 10.3390/ijms20030506. Int J Mol Sci. 2019. PMID: 30682874 Free PMC article.
-
Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine.Stem Cells Int. 2018 Jul 15;2018:8329174. doi: 10.1155/2018/8329174. eCollection 2018. Stem Cells Int. 2018. PMID: 30123294 Free PMC article. Review.
Cited by
-
Mesenchymal stem cell-based bone tissue engineering for veterinary practice.Heliyon. 2019 Nov 27;5(11):e02808. doi: 10.1016/j.heliyon.2019.e02808. eCollection 2019 Nov. Heliyon. 2019. PMID: 31844733 Free PMC article. Review.
-
In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells.Sci Rep. 2022 Jun 1;12(1):9127. doi: 10.1038/s41598-022-13114-3. Sci Rep. 2022. PMID: 35650303 Free PMC article.
-
Osteogenic growth peptide enhances osteogenic differentiation of human periodontal ligament stem cells.Heliyon. 2022 Jul 12;8(7):e09936. doi: 10.1016/j.heliyon.2022.e09936. eCollection 2022 Jul. Heliyon. 2022. PMID: 35874053 Free PMC article.
-
Tailored generation of insulin producing cells from canine mesenchymal stem cells derived from bone marrow and adipose tissue.Sci Rep. 2021 Jun 11;11(1):12409. doi: 10.1038/s41598-021-91774-3. Sci Rep. 2021. PMID: 34117315 Free PMC article.
-
Ageing and Polypharmacy in Mesenchymal Stromal Cells: Metabolic Impact Assessed by Hyperspectral Imaging of Autofluorescence.Int J Mol Sci. 2024 May 27;25(11):5830. doi: 10.3390/ijms25115830. Int J Mol Sci. 2024. PMID: 38892017 Free PMC article.
References
-
- Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K., Walter P. sixth ed. Garland Science; New York, NY: 2015. Molecular Biology of the Cell: the Cell Cycle.
-
- Assmus B., Urbich C., Aicher A., Hofmann W.K., Haendeler J., Rossig L., Spyridopoulos I., Zeiher A.M., Dimmeler S. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res. 2003;92(9):1049–1055. - PubMed
-
- Catana L., Groza I., Oana L., Páll E., Peştean C., Cătană R., Cenariu M. Canine mesenchymal stem cells isolation from bone marrow aspirates. Vet. Med. 2008;65(2):1843–5378.
-
- Chen M.J., Cheng A.C., Lee M.F., Hsu Y.C. Simvastatin induces G1 arrest by up-regulating GSK3beta and down-regulating CDK4/cyclin D1 and CDK2/cyclin E1 in human primary colorectal cancer cells. J. Cell. Physiol. 2018;233(6):4618–4625. - PubMed
-
- Ciuffreda M.C., Malpasso G., Musaro P., Turco V., Gnecchi M. Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. Methods Mol. Biol. 2016;1416:149–158. - PubMed
LinkOut - more resources
Full Text Sources
Research Materials