ilastik: interactive machine learning for (bio)image analysis
- PMID: 31570887
- DOI: 10.1038/s41592-019-0582-9
ilastik: interactive machine learning for (bio)image analysis
Abstract
We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance.
Similar articles
-
Machine Learning: Advanced Image Segmentation Using ilastik.Methods Mol Biol. 2019;2040:449-463. doi: 10.1007/978-1-4939-9686-5_21. Methods Mol Biol. 2019. PMID: 31432492
-
2D + Time Object Tracking Using Fiji and ilastik.Methods Mol Biol. 2019;2040:423-448. doi: 10.1007/978-1-4939-9686-5_20. Methods Mol Biol. 2019. PMID: 31432491
-
Interactive machine learning for fast and robust cell profiling.PLoS One. 2020 Sep 11;15(9):e0237972. doi: 10.1371/journal.pone.0237972. eCollection 2020. PLoS One. 2020. PMID: 32915784 Free PMC article.
-
Machine learning applications in cell image analysis.Immunol Cell Biol. 2017 Jul;95(6):525-530. doi: 10.1038/icb.2017.16. Epub 2017 Mar 15. Immunol Cell Biol. 2017. PMID: 28294138 Review.
-
Machine learning and computer vision approaches for phenotypic profiling.J Cell Biol. 2017 Jan 2;216(1):65-71. doi: 10.1083/jcb.201610026. Epub 2016 Dec 9. J Cell Biol. 2017. PMID: 27940887 Free PMC article. Review.
Cited by
-
Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma.Nat Immunol. 2024 Nov;25(11):2110-2123. doi: 10.1038/s41590-024-01992-w. Epub 2024 Oct 25. Nat Immunol. 2024. PMID: 39455893
-
Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration.J Funct Biomater. 2024 Oct 1;15(10):293. doi: 10.3390/jfb15100293. J Funct Biomater. 2024. PMID: 39452591 Free PMC article.
-
Structure, interaction and nervous connectivity of beta cell primary cilia.Nat Commun. 2024 Oct 24;15(1):9168. doi: 10.1038/s41467-024-53348-5. Nat Commun. 2024. PMID: 39448638 Free PMC article.
-
Combining ERAP1 silencing and entinostat therapy to overcome resistance to cancer immunotherapy in neuroblastoma.J Exp Clin Cancer Res. 2024 Oct 22;43(1):292. doi: 10.1186/s13046-024-03180-y. J Exp Clin Cancer Res. 2024. PMID: 39438988 Free PMC article.
-
Spatial analysis by current multiplexed imaging technologies for the molecular characterisation of cancer tissues.Br J Cancer. 2024 Oct 22. doi: 10.1038/s41416-024-02882-6. Online ahead of print. Br J Cancer. 2024. PMID: 39438630 Review.
References
-
- Simpson, R., Page, K. R. & De Roure, D. Zooniverse: observing the world’s largest citizen science platform. In Proc. 23rd International Conference on World Wide Web. 1049–1054 (ACM, 2014).
-
- Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. ilastik: interactive learning and segmentation toolkit. In Proc. 8th IEEE International Symposium on Biomedical Imaging. 230–233 (IEEE, 2011).
-
- Erickson, B. J., Korfiatis, P., Akkus, Z. & Kline, T. L. Machine learning for medical imaging. RadioGraphics 37, 505–515 (2017). - DOI
-
- Geurts, P., Irrthum, A. & Wehenkel, L. Supervised learning with decision tree-based methods in computational and systems biology. Mol. BioSyst. 5, 1593–1605 (2009). - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources