P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles
- PMID: 31545558
- DOI: 10.1111/febs.15070
P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles
Abstract
Physiological or pathological muscle disuse/inactivity or loss of the neural-muscular junction cause muscle atrophy. Atrophy-inducing conditions cause metabolic oxidative stress in the muscle tissue, activation of the ubiquitin-proteasome and of the autophagosome-lysosome systems, enhanced removal of the damaged proteins and organelles, and loss of muscle mass and strength. The signaling pathways that control these catabolic processes are only partially known. In this study, we systematically analyzed the role of p38α mitogen-activated protein kinase (MAPK) in denervation-mediated atrophy. Mice with attenuated activity of p38α (p38AF ) are partially protected from muscle damage and atrophy. Denervated (Den) muscles of these mutant mice exhibit reduced signs of oxidative stress, decreased unfolded protein response and lower levels of ubiquitinated proteins relative to Den muscles of control mice. Further, whereas autopahagy flux is inhibited in Den muscles of control mice, Den muscles of p38AF mice maintain normal level of autophagy flux. Last, muscle denervation affects differently the energy metabolism of muscles in normal and mutant mice; whereas denervation appears to increase mitochondrial oxidative metabolism in control mice, it elevates anaerobic glycolytic metabolism in p38AF mice. Our results indicate, therefore, that attenuation of p38α activity in mice protects Den muscles by reducing oxidative stress, lowering protein damage and improving the clearance of damaged mitochondria by autophagy.
Keywords: denervation; energy metabolism; muscle atrophy; p38 MAPK; signal transduction.
© 2019 Federation of European Biochemical Societies.
Similar articles
-
Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy.J Appl Physiol (1985). 2009 Jul;107(1):224-34. doi: 10.1152/japplphysiol.90932.2008. Epub 2009 Apr 23. J Appl Physiol (1985). 2009. PMID: 19390003
-
HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.Skelet Muscle. 2018 Feb 24;8(1):6. doi: 10.1186/s13395-018-0153-2. Skelet Muscle. 2018. PMID: 29477142 Free PMC article.
-
Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle.J Physiol. 2015 Jun 15;593(12):2707-20. doi: 10.1113/JP270093. Epub 2015 May 20. J Physiol. 2015. PMID: 25900738 Free PMC article.
-
Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome.Int J Biochem Cell Biol. 2013 Oct;45(10):2121-9. doi: 10.1016/j.biocel.2013.04.023. Epub 2013 May 7. Int J Biochem Cell Biol. 2013. PMID: 23665154 Free PMC article. Review.
-
Cellular and molecular mechanisms of muscle atrophy.Dis Model Mech. 2013 Jan;6(1):25-39. doi: 10.1242/dmm.010389. Dis Model Mech. 2013. PMID: 23268536 Free PMC article. Review.
Cited by
-
Sequencing technology in sarcopenia: current research progress and future trends.Front Mol Biosci. 2024 Sep 3;11:1309006. doi: 10.3389/fmolb.2024.1309006. eCollection 2024. Front Mol Biosci. 2024. PMID: 39290993 Free PMC article.
-
iPSCs ameliorate hypoxia-induced autophagy and atrophy in C2C12 myotubes via the AMPK/ULK1 pathway.Biol Res. 2023 Jun 3;56(1):29. doi: 10.1186/s40659-023-00435-4. Biol Res. 2023. PMID: 37270528 Free PMC article.
-
Ficus carica L. Attenuates Denervated Skeletal Muscle Atrophy via PPARα/NF-κB Pathway.Front Physiol. 2020 Dec 3;11:580223. doi: 10.3389/fphys.2020.580223. eCollection 2020. Front Physiol. 2020. PMID: 33343385 Free PMC article.
-
Effects of hindlimb unloading on the mevalonate and mechanistic target of rapamycin complex 1 signaling pathways in a fast-twitch muscle in rats.Physiol Rep. 2024 Mar;12(5):e15969. doi: 10.14814/phy2.15969. Physiol Rep. 2024. PMID: 38453353 Free PMC article.
-
P38α MAPK Coordinates Mitochondrial Adaptation to Caloric Surplus in Skeletal Muscle.Int J Mol Sci. 2024 Jul 16;25(14):7789. doi: 10.3390/ijms25147789. Int J Mol Sci. 2024. PMID: 39063031 Free PMC article.
References
-
- Cohen S, Nathan JA & Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 14, 58-74.
-
- Hershko A & Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61, 761-807.
-
- Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708.
-
- Gomes MD, Lecker SH, Jagoe RT, Navon A & Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98, 14440-14445.
-
- Mizushima N, Levine B, Cuervo AM & Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases